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Abstract

Using a novel dataset that integrates inflation expectations with social net-
work connections, we show that inflation expectations within one’s social net-
work have a positive, causal relationship with individual inflation expecta-
tions. This relationship is stronger for groups that share common demographic
characteristics such as gender, income, or political affiliation and when salient
information is shared. In a monetary-union New-Keynesian model, socially
determined inflation expectations induce imperfect risk-sharing, and can af-
fect the inflation and real output propagation of local and aggregate shocks.
To reduce welfare losses, monetary policy should optimally put more weight
on the inflation rate of socially more connected regions.
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1 Introduction
A growing body of literature is investigating how consumers form inflation ex-

pectations, and how these expectations matter for individual economic decisions
and macroeconomic dynamics.1 In this context, individual experiences and the use
of availability heuristics (Tversky and Kahneman (1973)) have been found to play
an important role in the formation of expectations. However, a central insight from
social psychology, pioneered by Festinger (1954), is usually not emphasized in the
inflation expectations literature: the formation of inflation expectations takes place
in a social context of interaction with others. Our analysis shows, both theoreti-
cally and empirically, that inflation expectations in the social network matter for
the formation of individual inflation expectations, and can affect macroeconomic
dynamics and policymaking.

In doing so, our paper makes three contributions. First, by merging inflation ex-
pectations with social network connections we create a novel dataset that is dense
enough to facilitate an analysis of inflation expectations in a social network context.
Second, we implement several empirical strategies to rigorously establish a posi-
tive, causal effect of the social network on individual inflation expectations. This
relationship is stronger for groups that share common demographic characteristics
such as gender, income, or political affiliation and when salient information trans-
mits strongly through the network. Third, our analysis uses a monetary-union
New-Keynesian model to highlight the theoretical implications of our empirical
findings, showing that socially determined inflation expectations can affect the in-
flation and real output propagation of local and aggregate shocks. A novel policy
implication also arises: to reduce welfare losses due to socially determined expec-
tations, monetary policy should optimally put more weight on the inflation rate of
socially more connected regions.

Empirically, pinning down the causal effects of social networks on individual
inflation expectations is challenging. First, that analysis necessitates a dataset that
combines geographically dense data on individual inflation expectations with a

1See, for instance, for individual decisions Coibion et al. (2023), and Hajdini et al. (2022b). For
macro implications, see Gabaix (2020), Kohlhas and Walther (2021), and L’Huillier et al. (2021),
among many others; and specifically, for recent work on the formation of inflation expectations,
Gennaioli et al. (2024).
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map of the social network. Second, when “other factors” are sufficiently common
across locations, they may spuriously create co-movement in individual inflation
expectations and inflation expectations of others. Examples of such “other factors”
may not only trivially coincide with common regional or aggregate shocks. They
may also include common trade or retail networks, or homophily in social net-
works, both of which can make specific shocks common to groups of individuals
and induce co-movement in their expectations.

Our analysis overcomes these challenges in various ways. To address the first
challenge, we construct a detailed, novel dataset that contains both inflation ex-
pectations and information on social networks. For consumer inflation expecta-
tions, we use data from the Indirect Consumer Inflation Expectations (ICIE) sur-
vey, which not only captures individual inflation expectations but also provides
detailed geographic and demographic information about the respondents.2 So-
cial connections are derived from the Social Connectedness Index Database (SCI),
initially introduced by Bailey et al. (2018a). The SCI measures the social connect-
edness between different counties of the United States as of April 2016, based on
Facebook friendship connections. Analyzing this data at a monthly frequency and
at the county level yields sufficiently thick data for our purpose, with over 1.9
million observations from March 2021 to July 2023.

Central to our empirical analysis is exploiting these data to construct a monthly
measure of inflation expectations of others to whom we are connected via the social
network. Thanks to the thickness of our data, we can compute average inflation ex-
pectations for each U.S. county. Then, we construct expectations of others relevant
for an individual in a given county by taking a weighted average of these aver-
age expectations in other counties. In this calculation, the SCI weights used are
proper to each county and give greater importance to other counties that are more
strongly connected through the social network to an individual’s own county.

Given this novel dataset, our analysis deploys three strategies to show that so-
cial networks are an important channel for the formation of individual inflation
expectations. Each approach regresses individual inflation expectations on the in-

2The survey is nationally representative of the US and aligns with the aggregate trends in
the NY Fed’s Survey of Consumer Expectations and the University of Michigan’s Survey of
Consumers. See Hajdini et al. (2022a) for details.
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flation expectations of others while accounting in different ways for “other factors”
and endogeneity concerns. Our first approach accounts for “other factors” directly,
by including detailed fixed effects that capture any systematic unobserved county
characteristics and time variation. To rule out spurious transmission of common
local shocks, a variant of this approach excludes proximate counties, while other
variants include controls interacted with time-fixed effects, such as individual de-
mographic characteristics and county demographic characteristics, as well as an
explicit measure of price shocks transmitted through common retail networks.
These variables explicitly account for variation that stems, for example, from the
co-movement of prices in similar consumption baskets and may induce common
movements in the associated inflation expectations.

A second approach creates additional variation at the county level to remove
variation in “other factors” at the county-time level that may affect identification.
Specifically, we construct county × demographic × time inflation expectations
of others that allow us to include county-time fixed effects. These county-time
fixed effects absorb any variability that equally affects all demographic groups
in a county at a given time. They alleviate concerns about, for instance, spatial
spillovers, trade relationships, or demand spillovers from nearby regions, among
other confounding factors.

Finally, we apply an instrumental-variable approach that addresses any re-
maining endogeneity concerns, including those implied by the Manski (1993) re-
flection problem. The idea behind the instrument is simple: gas prices are relevant
for the formation of inflation expectations (Coibion and Gorodnichenko (2015))
and that relevance varies across locations, depending on the importance of gas us-
age, which we show is not related to the social network weights. The approach
captures this variation with a variable that interacts commuting share and the na-
tional gas price. A regression of inflation expectations on this variable allows us
to then construct local shocks to inflation expectations from the predicted value,
after carefully filtering out any common time variation and county-specific effects.
Then, the analysis aggregates up these shocks across the network, for each county.
Using this measure as an instrumented value in a final step for inflation expec-
tations in the social network allows one to gain an unbiased causal estimate for
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the effect of inflation expectations in the network on individual inflation expecta-
tions. Not least in their totality, these three approaches contribute to the strength
of identification while consistently demonstrating the relevance of social networks
in shaping individual inflation expectations.

Beyond establishing this empirical importance of social networks for the forma-
tion of inflation expectations, our analysis also shows an example of the theoretical
relevance of socially determined inflation expectations in a monetary policy con-
text. We do so by means of a simple two-region monetary-union New Keynesian
model à la Nakamura and Steinsson (2014), where we allow for regions to place
more weight on the expectations of the other region than implied by the trade
shares in the consumption aggregator. The regions are otherwise homogeneous
but can differ in their economic size and exposure to regional supply and demand
shocks. We analytically derive in this general equilibrium setting how socially de-
termined inflation expectations can distort the dependence of both regional and
aggregate variables on the terms of trade relative to a full information rational ex-
pectations (FIRE) benchmark.

Several theoretical results arise, all tracing back to the fact that in the pres-
ence of home bias, households under-weight the inflation rate of locally-produced
goods, but over-weight the inflation rate of goods produced in the other region.
As a consequence of this full-information rational-expectations (FIRE) deviation
in relative expectations and hence, prices, perfect risk-sharing breaks down. Like-
wise, with regards to the dynamics of key variables, FIRE dynamics of regional
inflation and output are distorted following local shocks, but not common aggre-
gate shocks. With regards to aggregate effects, dynamics of inflation and output
are also distorted by the presence of socially determined inflation expectations—
but only if consumers in one region are disproportionally attentive to the other
region’s inflation rate compared to the two regions’ relative economic sizes.

Finally, our analysis presents a novel policy implication: to reduce welfare
losses due to socially determined inflation expectations, monetary policy should
optimally put more weight on the inflation rate of socially more connected regions.
This optimal response is isomorphic in our model to policy responding to the terms
of trade between the two regions in addition to aggregate inflation. It also mimics
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the spirit of results in the open-economy literature such as Aoki (2001).
Quantitatively, socially determined inflation expectations can be important as a

simple calibration of our model shows. First, we find that as a result of socially de-
termined expectations an economically significant impact effect arises in the case
of local supply shocks, while it remains small for local demand shocks. The im-
pact of a one-time home supply shock on output and inflation is about 3.7% and
6.2% lower compared to a full-information rational-expectations benchmark, re-
spectively. Second, in terms of the weight on the regional inflation rates, policy
should assign as 26% higher weight to the inflation rate of the home region.

Literature. The findings from our analysis are related to several strands of the
literature, in addition to the papers already referenced above. At a fundamental
level, our analysis is most related to a large literature that studies the formation
of inflation expectations and has shown how individual characteristics and expe-
riences affect the process of expectations formation (for example, among many,
Malmendier and Nagel (2016), D’Acunto et al. (2021b), Kuchler and Zafar (2019),
Hajdini et al. (2022a) or Gennaioli et al. (2024)). A behavioral theoretical literature
in parallel argues individuals use heuristics in the formation of beliefs. This litera-
ture goes back most prominently to Kahneman and Tversky (1972). It has recently
been refined using the diagnostic expectations model (Bordalo et al. (2018), Bor-
dalo et al. (2019), and operationalized in the New Keynesian modeling and policy
framework by L’Huillier et al. (2021) and Bianchi et al. (2023). Relative to these
papers, our analysis emphasizes theoretically and empirically the notion of socially
determined inflation expectations and their potential impact on the dynamics of
regional and aggregate inflation and output.

Our analysis, moreover segues with a growing empirical literature that has em-
phasized the role of social interactions on economic decision-making. Most related
is the seminal work by Bailey et al. (2018b) in the context of housing, which shows
that individuals whose geographically distant friends experienced larger house
price increases are more likely to transition from renting to owning. Using a sur-
vey for individuals in Los Angeles, Bailey et al. (2019) also show that the social
network can affect house price expectations. Likewise emphasizing the role of so-
cial networks, Burnside et al. (2016) use “social dynamics” to explain how there
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can be booms and busts in the housing market. Our relative empirical contribu-
tion lies in focusing on inflation expectations of the entire consumption basket,
heightening the relevance of socially determined inflation expectations in light of
a monetary policy context. On the theory side, we demonstrate the potential im-
portance of socially determined inflation expectations in a simple monetary-union
New Keynesian model, a framework which can in principle also be extended to
evaluate some of the earlier empirical findings (Bailey et al. (2018b, 2019)).

Extensive work also aims to understand how individuals form social networks,
as in Banerjee (1992), Acemoglu et al. (2011), and Golub and Sadler (2016).3 An-
other strand of the literature on networks comprises work in macroeconomics fo-
cused on the transmission of shocks through production networks as, for exam-
ple, in Baqaee and Farhi (2018), Rubbo (2020), Pasten et al. (2020). Our paper re-
lates to both strands by showing that a key macroeconomic variable—inflation
expectations—is influenced by social interactions. Unlike the first set of papers, as
well as Arifovic et al. (2013) and Grimaud et al. (2023) who consider specific forms
of social learning in a New-Keynesian framework, our analysis abstracts from
learning. Instead, our theoretical analysis highlights the implications of socially
determined inflation expectations in a monetary-union New Keynesian model,
such as the implication for risk-sharing or optimal regional inflation weights.

2 Empirical Analysis
To gauge the effect of the social network on individuals’ inflation expectations,

our analysis subsequently estimates variants of the following specification:

πe
i = α + β

N

∑
j=1

ωijπ
e
j + ϵi, (1)

relating inflation expectations πe
i of some individual/region to inflation expecta-

tions πe
j of individuals/regions j whose importance for i’s beliefs are captured by

social network weights ωij. Specifications of this type are common in the social

3Other notable papers in the social learning literature in a network context include Ellison and
Fudenberg (1993), Mobius and Rosenblat (2014), Chandrasekhar et al. (2020), Board and Meyer-ter
Vehn (2021), and Elliott and Golub (2022).
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learning literature, and we show in Online Appendix B how they can be micro-
founded in a model of memory and recall, a framework particularly relevant in
the inflation expectations literature.4 The coefficient of interest for our analysis
is contained in β, which is positive if social interaction positively affects inflation
expectations.

Estimating this equation is challenging for reasons of data availability and due
to empirical challenges proper to the social network context. The next sections
show how we address them, first describing a novel dataset that contains inflation
expectations and social network weights required to estimate this equation. An
ensuing section describes the particular empirical challenges in the estimation of
this type of equation and the strategies we apply to overcome them. Our results,
finally, show that social interaction has a causal, positive relation with the inflation
expectations of others.

2.1 Data

To establish a network effect on individual inflation expectations, any analysis re-
quires a dataset that combines dense survey data on inflation expectations of con-
sumers with a map of their social network. We construct a novel dataset that con-
tains these two essential features.

Data on consumer inflation expectations come from the Indirect Consumer In-
flation Expectations (ICIE) survey, developed by Morning Consult and the Center
for Inflation Research of the Federal Reserve Bank of Cleveland. This survey is
nationally representative of the US. Hajdini et al. (2022a) describe its properties in
detail, showing in particular its high correlation with inflation expectations from
established surveys. Of note, the survey elicits expectations of changes in individ-
ually relevant prices instead of aggregate prices, which will be directly relevant
for consumers’ decisions in the model we introduce in Section 4. Respondents are
sampled in repeated cross-sections; the main variables of interest pertinent to our
analysis that the survey records—in addition to inflation expectations—include
the identity of counties, gender (male-female), income brackets (less than 50k, be-
tween 50k and 100k, and over 100k), age (18-34, 35-44, 45-64, 65+), and political

4See, for example, the recent work by Gennaioli et al. (2024) that shows the ability of such
models to explain de-anchoring of inflation expectations through selective recall.
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party (Democrat, Republican or Independent). To remove outliers, our analysis
drops the top and bottom 5 percent of responses at each point in time, resulting in
1.9 million monthly observations for the period from March 2021 to July 2023.

Data on social connections at the county level come from the Social Connected-
ness Index Database (SCI). The SCI was first proposed by Bailey et al. (2018a) and
measures the social connectedness between different regions of the United States
as of April 2016, based on Facebook friendship connections. Specifically, the SCI
measures the relative probability that two representative individuals across two
US counties are friends with each other on Facebook. That is,

SCIi,j =
FB Connectionsi,j

FB Usersi × FB Usersj
,

where FB Connectionsi,j denotes the total number of Facebook friendship connec-
tions between individuals in counties i and j and FB Usersi, FB Usersj denote the
number of users in location j. Intuitively, if SCIi,j is twice as large as SCIi,l, a given
Facebook user in location i is about twice as likely to be connected with a given
Facebook user in location j than with a given Facebook user in location l.

In our analysis, we normalize the SCI by county so weights add up to unity,
that is, ωc,k =

SCIc,k
∑
k

SCIc,k
. Using these weights, we then construct the central variable

in our analysis, the expectations of others:

πe,others
c,t = ∑

k ̸=c
ωc,kπe

k,t, (2)

where πe
k,t captures the average inflation expectations of individuals in county k

at time t. In particular, this measure implies that county c will be more exposed
to information in county k if many users of county k have Facebook friendship
connections with users in county c. Because our SCI weights were sampled in
2016, our measure of inflation expectations of others is unlikely to be influenced
by weights that are endogenous to the post-pandemic rise of inflation and inflation
expectations. Our analysis at the same time assumes that social networks in 2021
are correlated with social networks in 2016.

It is important to highlight that we do not analyze individual-level social con-
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nectedness. The SCI is a proxy of how connected an average individual of a given
county is to individuals in another county. This measure has advantages and dis-
advantages. Its usefulness for our analysis stems from the common factors that
explain connections between regions, such as past migration patterns (see Bailey
et al. (2018a), Bailey et al. (2022)). In line with this feature of the data, we are
not necessarily interested in the information shared exclusively on Facebook,5 but
instead in common patterns of social connections. The SCI is a proxy for such a
deeper social relationship between individuals spatially separated.

While Bailey et al. (2018a) establish in detail the social connectednesss proper-
ties of the measure, we provide examples of the connectedness weights as applica-
ble to our analysis (see Online Appendix D.1). We observe three distinct patterns.
First, as expected, geography plays a significant role, with stronger connections
to nearby counties appearing. Second, interestingly, we also observe robust social
links with more distant counties. Third, there is substantial heterogeneity in social
connectedness, so even neighboring counties show varying degrees of influence on
cities. Our empirical strategy and robutness exercises will take into consideration
those geographic patterns, as we discuss in the subsequent sections.

2.2 Challenges and Identification Strategy

The main challenge to identifying an effect of the social network on inflation ex-
pectations lies in ruling out that the empirical measures of beliefs of others reflect
“other factors” common across counties in the social network. Whenever such
other factors are sufficiently common across counties, they may create spurious co-
movement in individual inflation expectations and inflation expectations of others.

Several factors are likely to constitute such a challenge to identification. First,
common shocks may create co-movement in individual beliefs and beliefs in the
network. These common shocks may occur at the aggregate level, or at more disag-
gregated but influential local levels. Second, other networks may transmit shocks
and thereby create spurious co-movement in inflation expectations. Such networks
may be (local) trade networks that connect counties or they may include common

5Our instrumental variables strategy below, which exploits salient local gas prices as the instru-
ment, does suggest that salient information such as information on local gas prices flows through
the network—information that is highly relevant for the formation of inflation expectations.
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retail networks that generate price co-movement in consumption baskets across
counties. Such common price co-movement may then lead people in the social net-
work to form similar inflation expectations. Third, homophily in social networks
(i.e., we are friends with similar people) may induce common price movements be-
cause similar friends share similar consumption baskets, and hence, shared infor-
mation about similar baskets may lead to co-movement in inflation expectations.

While many more factors may create co-movement in inflation expectations,
the subsequent analysis builds on three different approaches to provide identifica-
tion. Not least in their totality, these three approaches contribute to the strength of
identification.

Our first approach accounts for “other factors” directly, as much as possible.
Our second approach consists of enriching the data structure of the network and
creating additional variation at the county level that can then be used to filter out
variation associated with “other factors.” Our third approach is to construct ex-
ogenous, idiosyncratic local shocks to inflation expectations which can be used to
gauge the causal impact of social interaction on inflation expectations, irrespective
of the concerns outlined above. All three approaches provide an estimate for the
importance of social networks on the formation of inflation expectations as well
as network stability. The second approach additionally gauges the importance of
common demographics in the social network. The third approach additionally
considers the role of salience for the stability of inflation beliefs in the social net-
work. The third approach also addresses endogeneity concerns such as the Manski
(1993) reflection problem.6

Specifically, to overcome the identification challenges, the first approach fil-
ters out common aggregate shocks and time-county-specific variation by includ-
ing time-fixed effects as well as the average expectations of others in that county.
These latter, time-county-level controls capture the role of common trends, close-
by connections due to proximity in space, and county-specific shocks, such as lo-
cal price shocks. We also filter out any systematic county characteristics through
county-fixed effects. Then, to identify whether information is transmitted through
social networks or other local networks that may be spuriously correlated with

6If the social networks are, in reality, irrelevant for individual expectations, then the Manski
(1993) reflection problem disappears. In Online Appendix C.1 we prove this result.
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social networks, we explicitly exclude proximate counties and only keep counties
beyond a certain distance; hence, we ignore data from counties that are more likely
to share spatial shocks. As a further step to take into account the role of other net-
works that might spuriously correlate with the social network, we include detailed
time-varying controls. These controls include individual demographic character-
istics and demographic-time fixed effects as well as an explicit measure of price
shocks transmitted through common retail networks. These controls aim to re-
move variation that stems for example from the co-movement of prices in similar
consumption baskets which homophily embodied in social networks might gen-
erate. Thus, after taking into account all the observational characteristics of the
individuals, our identifying variation comes from the residual inflation expecta-
tions of others in the social network, above and beyond the expectations that can
be accounted for by observables.

The second, complementary approach creates additional variation at the county
level to gain identification. Specifically, we construct county × demographic ×
time networks that allow us to include county-time fixed effects. These county-
time fixed effects absorb any variability that affects all demographic groups in a
county in a given period of time equally. They alleviate concerns about spatial
spillovers, trade relationships, or demand spillovers from nearby regions, among
other confounding but unobserved factors.

Finally, the third approach implements an instrumental variables strategy that
addresses any remaining endogeneity concerns. Specifically, the approach follows
Hajdini et al. (2022a), that measure whether a national change in gas prices will
disproportionately impact inflation expectations in areas with higher car usage in-
tensity. The approach takes two steps: First, one regresses inflation expectations on
the interaction of commuting shares by car and the national gas price while filter-
ing out any common time variation or county-specific fixed effects. One then uses
the regression results to generate local, county-specific shocks in inflation expecta-
tions as the component of inflation expectations predicted by the county-specific
exposure. The first step concludes by aggregating these local inflation expectations
shocks across counties, county by county, using the social network weights of each
county. Second, this resulting measure then serves in a second regression as an
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instrumented value for inflation expectations in the social network, allowing us to
isolate an unbiased, causal effect of inflation expectations in the social network on
inflation expectations.

This third approach rests on two assumptions in particular: First, it assumes
that shares of commuters and social network weights are not related, which rules
out spurious correlation in inflation expectations in the network because gas price
movements are translated more strongly if two counties both have high gas use
shares. We test this assumption and find no correlation.7 Second, it assumes that
local county-level shocks in the cross section do not influence US demand for gas
significantly, nor do any other local policies that can jointly influence expectations
and local gas price.

Since it is well known from the inflation expectations literature that higher gas
prices lead to higher inflation expectations (Coibion and Gorodnichenko, 2015),
this third instrumental-variable approach may also provide a glimpse into the type
of information that flows through the social network: on average, if a positive
relationship emerges from the estimation, people must be talking about salient
inflation-relevant experiences, such as prices at the pump.

3 Results
Across all approaches, our analysis finds strong evidence that social networks

constitute an important determinant of individual inflation expectations.

3.1 Relation with Inflation Expectations of Others

This subsection presents the part of this conclusion that is due to our first approach:
Individual inflation expectations have a positive association with inflation expec-
tations in the social network, even after we take into account a plethora of “other
factors” that might spuriously imply a correlation of inflation expectations. Be-
cause subsequent sections reach the same conclusion, while based on the other

7Figure 9 in the Online Appendix D.2 confirms this assumption by displaying results from a
regression of network weights and gas use shares across all county pairs. The coefficient is very
small and not statistically different from zero for most counties. A joint regression adding all
counties and including individual and time fixed-effects fixed effects has a small coefficient that is
not statistically different from zero.
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approaches, this first section can thus be read as delineating the common, key mes-
sage of our analysis.

We implement our first approach by estimating several specifications. These
specifications all use individual-level data, which allows us to take into account
detailed fixed effects. Specifically, we estimate specifications of the following type:

πe
i,c,t = α0 + α1πe

−i,c,t + β ∑
k ̸=c

ωc,kπe
k,t + εi,c,t, (3)

where πe
i,c,t denotes the inflation expectations of individual i, located in county c

at time t. πe
−i,c,t denotes the expectations of others in county c which exclude the

expectations of individual i from the county average. In addition, to take into ac-
count “other factors” as discussed above, we include into the set of specifications
county fixed effects, time fixed effects, respondents’ demographic characteristics
fixed effects, interactions of demographics and time fixed effects, and the com-
bination of all demographic characteristics together interacted with a time fixed
effect. We also provide robustness exercises including county characteristics inter-
acted with a time fixed effect and specifications where we exclude nearby counties,
or take into account the presence of common retail networks. All observations are
weighted by the number of respondents in a county in a given period of time.
Standard errors are clustered at the county level.8

Across specifications, strong evidence emerges that individual inflation expec-
tations are highly significantly associated with the inflation expectations of others.
Table 5 reports the estimation results from a first set of specifications. The first
row displays the coefficient estimates associated with the network-weighted in-
flation expectations of other counties, and the second row displays the estimates
for county “leave-out” inflation expectations. The OLS estimates in Column 1 in-
dicate an elasticity of inflation expectations of 0.19 for an individual with respect
to inflation expectations in other counties. The inclusion of time fixed effects that
absorb time variation in inflation common to all counties leaves this result almost

8The results remain robust when using unweighted specifications (see Online Appendix
Table 7) or weighting by county population (Online Appendix Table 8) and are consistent under
alternative clustering methods, such as clustering standard errors at the state level (see Online
Appendix Table 9).
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Table 1: Individual Inflation Expectations and the Inflation Expectations of Others
(1) (2) (3) (4) (5) (6) (7) (8)

Expectations of Others 0.194*** 0.176*** 0.252*** 0.115** 0.051*** 0.068*** 0.058*** 0.059***
(0.043) (0.050) (0.074) (0.047) (0.017) (0.019) (0.020) (0.020)

County Expectations 0.755*** 0.732*** 0.603*** 0.557*** 0.542*** 0.469*** 0.454***
(0.048) (0.042) (0.058) (0.049) (0.051) (0.019) (0.016)

Time FE No Yes No Yes Yes Yes Yes Yes
County FE No No Yes Yes Yes Yes Yes Yes
Demographic FE No No No No No Yes Yes Yes
Demographic-Time FE No No No No No No Yes Yes
Combined Dem-Time FE No No No No No No No Yes
Observations 1,926,282 1,926,282 1,926,282 1,926,282 1,926,282 1,925,393 1,925,393 1,925,393
R-squared 0.017 0.017 0.017 0.014 0.017 0.033 0.036 0.049

Note. The table shows the results of regression (3), where the dependent πe
i,c,t is the inflation expectations of individual i who

answers from county c at time t. Observations are weighted by the number of responses in a county in each period. Demographics
fixed effects are the income, age, politics and gender definitions used in the paper and are at the individual level. Combined Dem-
Time FE is a time fixed effect interacted by the combination of demographic characteristics that an individual has (for example,
male-<35 yo, <100k, independent fixed effect interacted by a time fixed effect. Standard errors are clustered at the county level.

unchanged, with a coefficient of 0.18 (Column 2). Likewise, the inclusion of county
fixed effects that capture the systematic, time-invariant effect of county characteris-
tics preserves this result at a similar magnitude, with a coefficient of 0.25 (Column
3). Absorbing jointly most of this variation by including both county and time
fixed effects again implies a statistically significant coefficient (Columns 4 and 5),
whether or not county-level expectations of others are taken into account.9 Now,
an increase of 1 percentage point in the inflation expectations of others is associ-
ated with an increase of 0.05 to 0.12 percentage points in an individual’s inflation
expectations.10

An important finding is that this relationship between individual inflation ex-
pectations and the inflation expectations of others notably remains robust when
we take into account demographic fixed effects (Column 6), an interaction of de-
mographic characteristics one at a time with time-fixed effects (Column 7) and an
interaction of multiple demographic characteristics with time fixed effects (Col-
umn 8). These demographic fixed effects include indicator variables for brackets
of income, age, political affinity and gender. An example for the cells captured by

9In line with other surveys of households expectations, even in controlled environments, as in
Coibion et al. (2022), our analysis accounts for little of the variation in terms of R2. This result is
due to high heterogeneity at the individual level. At the county level when this heterogeneity is
average out, we find similar results, but crucially, also an R2 greater than 40%.

10In Online Appendix C.2 we show that when the network linkages is more homogeneous,
the inclusion of a time fixed effect can generate a negative bias. Therefore, these results present a
lower bound for the true OLS coefficient. We address this issue in the next sections.
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this third interaction is given by an indicator variable for men under 35 years of age
and with income less than 100k. As discussed, these demographic variables and
their interactions may correlate with the network weights—we are friends with
similar people—and similar time trends we experience along with our friends.
As a consequence, they might lead to an exposure to similar prices across coun-
ties and hence, correlated inflation expectations. But, because we explicitly filter
out variation associated with these common demographic factors and their trends,
our results indicate that inflation expectations of others transmitted through social
connections—beyond what is due to similarity in social connections—are indeed
driving individual inflation expectations. That is, the density of our network data
provides sufficient heterogeneity in social connections to allow us to detect trans-
mission of inflation expectations through the social network.11

The findings of this section are also robust to taking into account common, lo-
cal spatial shocks. For that, our analysis uses expectations of others computed
only from counties outside a certain radius of a given respondent’s county. When
we then re-estimate the main specifications above, we find across specifications
that the inflation expectations from far-away counties affect a respondent’s own
inflation expectations when respondents are connected through social networks
to those counties. Table 10 in Online Appendix F shows the results for this ex-
ercise. These results align with the findings in Bailey et al. (2018b, 2019) that the
experiences in the housing market of far-away friends affect an individual’s local
housing decisions, such as the choice of renting or buying.

While common retail networks and their common prices across counties might
also imply a spurious transmission of inflation expectations through the social net-
work, this channel is likely not the explanation for our findings either. Consider,
for instance, the scenario where retailers implement uniform pricing strategies
across locations, as is the case for the US (DellaVigna and Gentzkow, 2019). In such
cases, counties that share common retail chains may experience synchronized price
adjustments (Garcia-Lembergman (2020)), likely synchronizing inflation expecta-
tions. In order to control for the propagation of shocks through the retail-chain

11Additionally, in Table 11 in Online Appendix F, we take into account further demographic
characteristics measurable at the county level, interacted with a time fixed effect. We find that our
key coefficient of interest, on the expectations of others, remains positive and significant.
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networks, we construct exposure to common retail chains using weights that char-
acterize the connectedness of each pair of counties in the retail chain dimension,
as measured by Garcia-Lembergman (2020). These weights place a higher weight
on counties k that are important in terms of sales for the dominant retail chains
in county c. Based on these weights, we calculate the exposure to inflation ex-
pectations in counties with shared retail chains and incorporate this measure of
exposure as a control variable in our regression analysis. Including such controls
for inflation expectations in counties with shared retail chains does not change our
key findings, as Table 12 in Online Appendix F shows. Therefore, our findings
likely come from the social network and not a common price shock given a similar
consumption basket and common retail networks.12

3.2 Relation with Inflation Expectations of Similar Others

Strong evidence for the role of expectations of others affecting individual infla-
tion expectations also emerges when we apply our second identification approach.
The results from this second approach systematically alleviate concerns arising
from confounding but potentially unobserved common factors, such as demand
spillovers from nearby regions or trade linkages. They also show that demo-
graphic similarity in the social network plays an important role in the transmission
of inflation expectations.

To generate these findings, our analysis constructs exposure to inflation ex-
pectations of similar others in distant counties. We define such exposure as ∑k ̸=c ωc,kπe

d,k,t,
where πe

d,k,t denotes the average inflation expectations across individuals with
demographic characteristic d located in county k in period t. The demographic
characteristics we consider include gender (male, female), political affiliation (Democrats,
Republicans, Independents), income (less than 50k, between 50k and 100k, over
100k), and age (18-34, 35-44, 45-64, 65+).

Our analysis then estimates the following specification:

πe
i,d,c,t = α0 + α1πe

−i,d,c,t + β1 ∑
k ̸=c

ωc,kπe
d,k,t + θct + εi,c,t. (4)

12Garcia-Lembergman (2020) finds that such networks influence local prices, so our result
imply that the influence on inflation expectations seems to originate from the social network and
not from price shocks transmitted through shared retail networks.
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πe
i,d,c,t denotes the inflation expectations of individual i, with demographic charac-

teristic d, in county c at time t; πe
−i,d,c,t represents the average inflation expectations

of all the other individuals in that same county c that share the same demographic
characteristics d with individual i; and ∑k ̸=c ωc,kπe

k,t captures the inflation expecta-
tions of similar others in distant counties.

Because by construction there are now multiple expectations of others at each
point in time for a given county—one for each demographic category—this treat-
ment of the data allows us to implement our second identification approach: “Split-
ting” the network allows us to exploit additional variation in beliefs of others and
include county-time fixed effects. This inclusion of county-time fixed effects ad-
dresses one main concern for identification, which is that counties connected by
social ties are exposed to common regional shocks which may create spurious co-
movement of expectations, but may be unobserved. Such concerns may in par-
ticular include common shocks due to spatial spillovers, trade relationships, or
demand spillovers from nearby regions, among many others.13 The identifying
variation needed on top of the common variation comes from comparing the infla-
tion expectations of individuals who live in the same county and are connected to
the same other counties, but who have absorbed different experiences of others be-
cause they belong to different demographic groups. Additionally, “splitting” the
data as proposed by construction also allows our analysis to gauge the importance
of demographic similarity in the transmission of inflation expectations through the
network.

Strong evidence emerges from implementing this second approach: The in-
flation expectations of others are positively related to individual inflation expec-
tations. Moreover, our results also show that demographic similarity along sev-
eral dimensions—gender, political affiliation, income, and age—always plays an
important role in the transmission of inflation expectations. For example, in the
case of gender,14 the effect of one’s social network turns out to be statistically

13For example, San Francisco and LA are connected socially, and, at the same time, there are
common shocks in California that affect inflation expectations in both cities. Hence, even if San
Francisco and Los Angeles were not connected by the social network, we would expect their
inflation expectations to spuriously co-move. The county-time fixed effects take into account any
such common regional shocks in California and even shocks in the county itself.

14Gender is a particularly appealing similarity feature because it does not depend on people’s
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and economically significant. A 1 pp. increase in the inflation expectations of
the gender-specific network increases own-inflation expectations between 0.28 and
0.78 pps. Notably, after we additionally filter out granular time, state-time, county,
and county-time fixed effects, the coefficient is always statistically significant and
the fixed effects increase its magnitude. Table 2 shows these results. Qualitatively,
the same findings hold for the other demographic characteristics we consider, as
Tables 13, 14, and 15 in Online Appendix F show. When including the belief of
similar others across all demographic dimensions jointly, they all have a highly
significantly relationship with individual beliefs, as the last two columns of Table
16 illustrates, extending support to our main finding of socially determined infla-
tion expectations.

Table 2: Similarity Effect by Gender
(1) (2) (3) (4) (5) (6)

Sim − Network 0.282*** 0.334*** 0.306*** 0.359*** 0.413*** 0.777***
(0.038) (0.028) (0.057) (0.047) (0.052) (0.092)

Sim − County 0.684*** 0.667*** 0.610*** 0.593*** 0.535*** 0.204***
(0.040) (0.029) (0.043) (0.029) (0.015) (0.056)

County FE No No Yes Yes Yes Yes
Time FE No Yes No Yes Yes Yes
State-Time FE No No No No Yes Yes
County-Time FE No No No No No Yes
Observations 1,910,679 1,910,679 1,910,679 1,910,679 1,910,679 1,910,679
R-squared 0.026 0.026 0.026 0.026 0.027 0.030

Note: The table shows the results of estimating specification (4), where the dependent variable πe
i,d,c,t denotes the inflation

expectations of individual i of gender d in county c at time t. Sim − Network is the average of inflation expectations of
individuals of the same gender in other counties. Sim − County is the average of inflation expectations of respondents of
the same gender within her/his own county. Observations are weighted by the number of responses in a county in each
period. Standard errors are clustered at the county level.

Further evidence of the importance of demographic similarity within demo-
graphic groups emerges when the analysis explicitly includes a measure of dissimi-
larity. To do so, we estimate specification (4), but include the network-weighted ex-
pectations of the respectively omitted other demographic group, ∑k ̸=c ωc,kπe

−d,k,t.
This term captures dissimilarity. Two results emerge: First, such dissimilarity of

choices, as much as, for example, in the case of political affiliation.
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others, denoted by “Dissimilarity-Network”, generally has an economically negli-
gible relationship with individual inflation expectations. It is always smaller than
the similarity effect itself, which continues to be highly significant, always posi-
tive and higher than the point estimates in the baseline with only similarity terms
present. Second, there is a positive, statistically significant difference between the
similarity and dissimilarity effects across specifications. Table 17 in Online Ap-
pendix F illustrates these findings in multiple specifications for gender, and Table
18 for all other demographic characteristics.

3.3 Transmission of Exogenous Shocks through the Network

Further strong evidence for the role of the social network in shaping individual in-
flation expectations emerges when we implement our third, instrumental-variable
approach. Applying this approach gives the results in this section a causal, bias-
free interpretation which makes them our preferred estimate. Relative to the pre-
ceding sections, this section also establishes that salient information must travel
through the network, an effect that at the network level mimics the individual-level
findings in the empirical expectations literature such as D’Acunto et al. (2021b).

As laid out in the methodology section, the approach follows the approach of
Hajdini et al. (2022a), exploiting cross-county variation in the share of individuals
commuting by car combined with monthly fluctuations in national gas prices. The
results that we present below align with the two steps of the approach, which can
be summarized as follows:

1. Step 1: project πe
d,c,t on Commc(i)× Pgas,t, including time fixed effects θt to filter

out any common variation across counties:

πe
i,d,c,t = αc(i) + θt + βdPgas,t × Commc(i) + εi,d,c,t, (5)

Then, obtain predicted GasEffectd,c,t = β̂dPgas,t × Commc(i).

2. Step 2: instrument ∑k ̸=c ωckπe
d,k,t with predicted ∑k ̸=c ωckGasEffectd,k,t in the

following regression:

πe
i,d,c,t = αc(i) + θt + ρ1πe

−i,d,c,t + ρ2 ∑
k ̸=c

ωc,kπe
d,k,t + εi,d,c,t, (6)
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where πe
d,c,t denotes inflation expectations of demographic group d in county c in

period t, αc(i) denotes county fixed effects, Pgas,t denotes the average national price
of regular gas according to the US Energy Information Administration, Commc(i)

denotes the share of people who use their own car to commute according to the
ACS and πe

−i,d,c,t denotes average county-demographic inflation expectations that
exclude the respondent’s own expectations. Notably, the results below focus on
demographic differences along the gender dimension although we also present
results irrespective of such differences. Allowing for gender differences in the
sensitivity to gas price exposure, βd, is motivated by the results in D’Acunto et
al. (2021a), who find that gender differences in inflation expectations can be ex-
plained by gender roles associated with shopping experiences. Gasoline prices, as
they show, are analogously more salient to men.

Table 3: Cross-Sectional Effect of Gas Price on Expectations
(1) (2) (3) (4) (5) (6)

Pgas,t -0.874** -1.060
(0.375) (0.211)

Commc(i) -7.457*** -8.383***
(1.347) (1.130)

Pgas,t × Commc(i) 3.171*** 3.318*** 3.310*** 3.414*** 3.958*** 0.834**
(0.513) (0.386) (0.444) (0.407) (0.475) (0.379)

County FE No Yes No Yes Yes Yes
Time FE No No Yes Yes Yes Yes
Sample All All All All Men Female
Observations 1,239,680 1,239,680 1,239,680 1,239,680 606,305 632,750
R-squared 0.008 0.012 0.011 0.015 0.014 0.015

Note: Columns (1)-(4) show results from estimating the first-stage specification πe
i,c,t = αc(i) + γt + βPgas,t ×Commc(i) + εi,c,t,

where πe
i,c,t denotes the inflation expectations of individual i at time t; Pgas,t denotes the average national price of regular

gas; Commc(i) denotes the share of people who use their own car to commute according to the ACS; and αc(i) and γt are

county and time fixed effects included as appropriate in the first 4 columns. Columns (5) and (6) show the results from

estimating πe
i,d,c,t = αc(i) + γt + βdPgas,t × Commc(i) + εi,d,c,t, where d ∈ (male, f emale). Observations are weighted by the

number of responses in a county in each period. Standard errors are clustered at the county level.

The regression results from the first step of the approach show a positive, highly
statistically significant effect of the network weighted measure on inflation ex-
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pectations. This finding holds across specifications and is in line with the well-
established impact of gas prices on inflation expectations. As Table 3 shows, a
one-dollar increase in the price of gas raises individual-level inflation expectations
between 3.171 and 3.414 percentage points in a county where everybody uses their
car to commute, relative to a counterfactual county where nobody does.

The findings from the first step also show that salience of experiences in the net-
work can amplify the transmission of information. According to Columns 5 and 6,
male respondents react more strongly to gas shocks than women in places where
gas is used more intensively to commute. The estimated coefficient for men is
3.958, while it is 0.834 for women. Aggregating these salient shocks to the network
level shows that these results also hold at the aggregate level, with a coefficient
of 1.980 for men and 0.571 for women, as Columns 1 and 2 of Table 4 show. This
difference is statistically significantly different from zero (see Table 20 in Online
Appendix for a formal test). As Table 19 in Online Appendix F shows, addition-
ally taking into account own-county demographic gas effects Gas_e f f ectd,c,t also
does not change these findings.

Our main finding in the paper—but now with a causal underpinning—is con-
firmed by the results from the second step: When we apply the instrumental vari-
ables approach, the coefficient estimate on the inflation expectations in the social
network is positive, statistically significantly different from zero, and increases
compared to the coefficient estimate from a corresponding OLS regression. As
shown in the previous sections, an OLS baseline estimate of the network effect
that takes into account fixed effects is 0.359 (replicated in Column (3)). The cor-
responding IV coefficient is 0.491, more than a third higher (Column (4)). Results
are economically meaningful. The estimated coefficient of 0.491 implies that an
individual exposed to the 75th percentile of inflation expectations in their social
network holds inflation expectations that are 1.15 percentage points higher than
those of a comparable individual exposed to the 25th percentile of expectations in
their social network. Given the causal, bias-free estimate interpretation from this
second step, we consider the estimated coefficient of 0.491 to be our preferred es-
timate of the social network effect. Accordingly, the calibrations in the subsequent
model analysis will be based on it.
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Table 4: Effect of Gas Price Variation in the Social Network on Inflation Expecta-
tions

(1) (2) (3) (4)
∑k ̸=c ωc,kGas_e f f ectc,d,t 1.980*** 0.571***

(0.200) (0.190)
∑k ̸=c ωc,kπe

d,k,t 0.359*** 0.491***
(0.047) (0.088)

πe
−i,d,c,t 0.532*** 0.365*** 0.593*** 0.561***

(0.023) (0.012) (0.029) (0.040)
Sample Men Female All All
Time FE Yes Yes Yes Yes
County FE Yes Yes Yes Yes
Regression OLS OLS OLS IV
F-Test - - - 1459
Observations 882,338 1,028,341 1,910,679 1,910,679
R-squared 0.020 0.018 0.026 0.012

Note: This table shows results from estimating two specifications. Columns (1) and (2) for πe
i,d,c,t = αc + θt + α1πe

−i,d,c,t +

βs ∑k ̸=c ωc,kGas_e f f ectd,k,t + εi,d,c,t,. Column (3) shows the results for πe
i,d,c,t = αc + ρ1πe

−i,c,t + ρ2 ∑k ̸=c ωc,kπe
d,k,t + εi,d,c,t. Col-

umn (4) runs the same specification as for Column (3), but instruments ∑k ̸=c ωc,kπe
d,k,t with ∑k ̸=c ωc,kGas_e f f ectd,k,t. πe

i,d,c,t

denotes the inflation expectations of individual i of gender d in county c at time t; πe
−i,d,c,t inflation expectations of respon-

dents of demographic d in county c at time t excluding individual i; and πe
d,k,t gender d inflation expectations in county k at

time t; Gas_e f f ectd,k,t denotes the gas effect variable constructed as described in the text; and αc and γt are county and time

fixed effects. We weight by the observations in a county in each period. Standard errors clustered at the county level.

4 Macroeconomic Implications
The above results establish a positive, causal relationship between the infla-

tion expectations of others and consumers’ own inflation expectations, a result that
aligns with the social determination of beliefs also found in other contexts (e.g. Bai-
ley et al. (2018b, 2020)). This section tractably incorporates such a determination
of beliefs into a New-Keynesian dynamic general-equilibrium model of a mone-
tary union, showing its macroeconomic importance relative to a full-information
rational expectations framework (FIRE).

Two main sets of results emerge: first, socially determined beliefs can signifi-
cantly distort the propagation of supply and demand shocks, while also optimally
requiring the central bank to shift policy weights across regions, mimicking the
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spirit of results in the open-economy literature such as Aoki (2001). Second, risk-
sharing is incomplete, similar to the results in Itskhoki and Mukhin (2021). Under-
lying these macroeconomic implications is a simple over-weighting of inflation ex-
pectations for goods in other regions, aggravated by regional asymmetries, which
amplifies distortions of relative prices and their dynamics.

4.1 Model Setup

The model economy comprises a monetary union where consumers live in two re-
gions, home (h) and foreign (f), that trade with each other, but workers are immobile
across regions, as in Nakamura and Steinsson (2014) and Herreno and Pedemonte
(2022). We assume that the size of the home region is n ∈ (0,1) whereas the size of
the foreign region is 1 − n. In what follows, we describe the economy of the home
region (H); the economy of the foreign region is symmetric to the home region (F).

Households. Households maximize their utility with respect to consumption,
labor hours, and bond holdings, subject to their budget constraint:

max
CHt,LHt,BHt/PHt

E0

∞

∑
t=0

βtζHt

[
C1−γ

Ht
1 − γ

− ψ
L1+α

Ht
1 + α

]
(7)

BH,t+1 + PHtCHt = WHtLHt + BHtRt + DHt (8)

where BHt denotes risk-less nominal bond holdings of consumers in the home re-
gion at time t, paying gross nominal interest Rt; CHt is real consumption; PHt is
the price level in the home region in period t; LHt denotes labor hours at nominal
wage rate WHt for consumers in the home region at time t; and DHt are the nom-
inal profits of firms in the home region paid to consumers in that region; ζHt is a
regional preference shock. Similar to Nakamura and Steinsson (2014), we assume
that labor is immobile across regions.

Households have CES preferences over varieties produced across all regions
with elasticity of substitution ν and preferences for the local good ϕH. Specifically,

CHt =

[
ϕ

1
ν
HC

ν−1
ν

H,H,t + (1 − ϕH)
1
ν C

ν−1
ν

H,F,t

] ν
ν−1

(9)
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where Cj,i,t is consumption of goods produced in region i by consumers located in
region j. We assume that preferences for local goods are proportional to the sizes
of the regional economies, so that, (1 − n)(1 − ϕF) = n(1 − ϕH). The price index of
the home region is defined by the CES preferences,

PHt =
(

ϕH p1−ν
Ht + (1 − ϕH)p1−ν

Ft

) 1
1−ν (10)

where pHt denotes the price of the good produced in the home region and pFt is
the price of the good produced in the foreign region, which is a CES aggregate of
a continuum of varieties z with an elasticity of substitution ηt,

Ci,j,t =

(∫ 1

0
ci,j,t(z)

ηt−1
ηt dz

) ηt
ηt−1

(11)

Firms. There is a continuum of firms in the home region that produce tradable
varieties and face demand coming from all regions. We denote the demand for the
home region products by YHt, and it is equal to

YHt = nCH,H,t + (1 − n)CF,H,t (12)

Firms produce using a production function linear in local labor, YHt(z) = LHt(z).
Real marginal costs, expressed in terms of domestic prices, are common across
firms within the region, and equal to the real wage mcHt =

WHt
PHt

.
Firms’ price-setting problem is subject to Calvo (1983) price rigidity, where in

each period firms cannot re-adjust their price with probability θ.

max
pHt(z)

Et

∞

∑
j=0

(θβ)t+jQt,t+j
[
pHt(z)yH,t+j(z)− mcH,t+jLt+j(z)

]
(13)

where YH,t+j(z) =
(

pHt(z)
pH,t+j

)−η
YH,t+j and Qt,t+j is a stochastic discount factor.

Monetary policy. The central bank sets the interest rate Rt according to a stan-
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dard Taylor rule,
Rt

R̄
=

(
πn

Htπ
1−n
Ft

π̄

)rπ

(14)

where R̄ is the steady-state value of the nominal interest rate and π̄ is the inflation
target.

4.2 Socially Determined Expectations

Our empirical analysis above showed that consumers form expectations based on
the expectations of others. We incorporate this finding into the consumer’s infla-
tion expectations formation process by making two assumptions:15 First, expec-
tations within each region are formed rationally using FIRE expectations for the
prices of local and imported goods, as well as region weights ϕi from the appropri-
ate consumption aggregator. That is, based on the linearized model, local inflation
equals

Π̂i,t = ϕiπ̂i,t + (1 − ϕi)π̂j,t

and local inflation expectations equal

EtΠ̂i,t+1 = ϕiEtπ̂i,t+1 + (1 − ϕi)Etπ̂j,t+1.16

Second, there is a also a cross-region, behavioral element in the expectations
formation process which we implement similarly to L’Huillier et al. (2021) and
Bianchi et al. (2023): As our empirical results show, consumers attach weights Γi

and 1 − Γi to their own local inflation expectations, and respectively to those of
other regions. That is,

ẼitΠ̂i,t+1 = ΓiEtΠ̂i,t+1 + (1 − Γi)EtΠ̂j,t+1

Note that learning about an individual’s consumption basket does not feature in
this setup. The motivation for this modeling choice derives from our empirical
findings: the instrumental-variable results show that exogenous local shocks in

15Online Appendix G generalizes this process to firms as well, leading to very similar
conclusions.

16Our approach can easily be cast in more detailed terms of expectations formation processes,
such as signal extraction problems.
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other counties which are fundamentally exogenous to an individual’s local con-
sumption prices affect beliefs of individuals about these own consumption prices.
There is nothing to learn about fundamentals, yet these shocks matter for beliefs.
The empirical results that take into account “other factors” further suggest validity
of the modeling choice. Additionally, in Online Appendix B we present a model
to micro-found the expression for the formation process of expectations, based on
Bordalo et al. (2023). These assumptions taken together imply that

ẼitΠ̂i,t+1 = Θown
i Etπ̂i,t+1 + Θother

i Etπ̂j,t+1 (15)

where Θown
i = (1 − ϕi − Γi + 2ϕiΓi) and Θother

i = 1 − Θown
i . These weights on infla-

tion expectations differ from trade weights ϕi and 1− ϕi in a systematic way as the
following proposition shows, and make up the basis for all subsequent deviations
from FIRE results:

Proposition 1 (Under-weighing local goods but over-weighing foreign goods).
Relative to FIRE, if there is home bias (ϕi > 0.5), then social determination of inflation ex-
pectations will under-weight the inflation expectations of local goods, but will over-weight
the inflation expectations of goods in the other region:

Θown
i < ϕi and Θother

i > 1 − ϕi

Proof. Follows from equation (15).

The intuition for this result is as follows: In a FIRE case (Γi = 1), consumers will
place weights on the inflation expectations of local goods that are identical to trade
weights ϕi. However, a deviation from FIRE (Γi > 1) leads to under-weighting, that
is, Θown

i < ϕi, only if there is home bias. The reason is that otherwise, absent any
other asymmetries such as home bias, any additional weight placed by consumers
on the inflation expectations of goods in other regions will symmetrically also be
placed by consumers in other regions on their respectively other regions, which on
net cancels out.

A direct corollary of the resulting distortion of the weights due to the social de-
termination of inflation expectations lies in the distortion of the risk-sharing con-
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dition between the two regions. In particular, as shown below, there will generally
be incomplete risk-sharing:

Corollary 1 (Incomplete Risk-Sharing). Let x̂t = P̂Ht − P̂Ft be the real terms of trade
between the two regions. Under a social determination of inflation expectations, the risk-
sharing condition is given by

−γĉHt + γĉFt = x̂t − (2 − ΓH − ΓF)x̂t︸ ︷︷ ︸
social network effect

(16)

An increase in the weight on the beliefs of others, (1 − Γi) for any i ∈ {H, F}, decreases
risk-sharing.

Proof. See Section A.1.

The effect of the behavioral deviation in the formation of inflation expectations is
akin to an uncovered interest parity shock in Itskhoki and Mukhin (2021); Candian
and De Leo (2023) that similarly leads to a modified risk-sharing condition. In fact,
the above results could be read as an alternative micro foundation to, for example,
noise traders when modeling uncovered interest parity shocks. The intuition is
rooted in Proposition 1: relative weights are distorted from their FIRE benchmark,
which coincides with perfect risk-sharing.

Socially determined inflation expectations can significantly affect the impact
effect of regional and aggregate demand and supply shocks, as well their propa-
gation, as we show next. The propagation of these shocks is characterized by the
following six equations that encapsulate the log-linearized, reduced model:

Consumption block:

ĉHt = Et ĉH,t+1 −
1
γ
(R̂t − EtΠ̂H,t+1) +

1
γ

êHt −
1 − ΓH

γ
Et(x̂t+1 − x̂t)︸ ︷︷ ︸

social network distortion

(17)

ĉFt = ĉHt +
1
γ

x̂t −
1
γ
(êHt − êFt) +

(ΓH + ΓF − 2)
γ

x̂t︸ ︷︷ ︸
social network distortion

(18)
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Inflation block:

Π̂Ht = κ(α + γ)ĉHt + βEtΠ̂H,t+1 + κ(1 − ϕH)χx̂t + ûHt −
κα(1 − ϕH)

γ
(êHt − êFt)

+ κ(1 − ϕH)χ̃x̂t︸ ︷︷ ︸
social network distortion

(19)

Π̂Ft = κ(α + γ)ĉFt + βEtΠ̂F,t+1 − κ(1 − ϕF)χx̂t + ûFt +
κα(1 − ϕF)

γ
(êHt − êFt)

− κ(1 − ϕF)χ̃x̂t︸ ︷︷ ︸
social network distortion

(20)
Terms of trade and policy rule block:

x̂t = x̂t−1 + Π̂Ht − Π̂Ft (21)

R̂t = rπ(nΠ̂Ht + (1 − n)Π̂Ft) (22)

where êit ∼ N (0,σ2
e ) and ûit ∼ N (0,σ2

u) denote iid regional demand and supply
shocks, respectively; χ = αν(ϕH+ϕF)+1

ϕH+ϕF−1 + α
γ and χ̃ = α(ΓH+ΓF−2)

γ .

Socially determined inflation expectations, relative to FIRE, show up clearly in
several of these equations: while Corollary 1 above already points to the reduction
in risk-sharing, socially determined inflation expectations also distort regional con-
sumption and inflation. Notably, socially determined inflation expectations alter
the sensitivity of regional dynamics to the terms of trade x̂t.

The precise effect on the propagation of aggregate and local shocks, at the dif-
ferent levels, depends on how the real terms of trade is affected as we show in the
subsequent propositions:

Proposition 2 (Regional Dynamics: Aggregate vs. local shocks). Relative to FIRE,
regional dynamics are distorted by the expectations of others in response to local shocks but
not in response to aggregate shocks.

Proof. As equations (17)-(22) show, distortions due to socially determined expec-
tations affect local dynamics as a function of the real terms of trade, xt. The real
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terms of trade, however, trivially do not change when there is a common aggregate
shock, only for local shocks. See Appendix A.2 for details.

What about the aggregate effect of shocks? The aggregate dynamics of inflation
and consumption are described by the following set of equilibrium equations:

Π̂t = κ(α + γ)ĉt + βEtΠ̂t+1 + ût (23)

ĉt = Et ĉt+1 −
1
γ
(R̂t − EtΠ̂t+1)−

n(1 − ΓH)− (1 − n)(1 − ΓF)

γ
Et(x̂t+1 − x̂t)︸ ︷︷ ︸

social network distortion

+
1
γ

êt

(24)
where ût = nûHt + (1 − n)ûFt and êt = nêHt + (1 − n)êFt. The distortion due to so-
cially determined demand again depends on the real terms of trade. Unlike in the
case of regional dynamics in Proposition 2, local shocks have an aggregate impact
only when some asymmetries are present. The next proposition presents such an
asymmetry condition:

Proposition 3 (Aggregate dynamics). Relative to FIRE, the expectations of others dis-
tort the aggregate dynamics for a regional shock if and only if there is effective belief asym-
metry, that is, ∆ = n(1 − ΓH)− (1 − n)(1 − ΓF) ̸= 0. Aggregate shocks do not lead to a
distortion relative to FIRE.

Proof. Follows directly from equation (24).

This proposition is again intuitive: Aggregate shocks do not affect the real
terms of trade and hence do not lead to a distortion. Local shocks do affect the
real terms of trade. However, some degree of regional heterogeneity is addition-
ally necessary for socially determined inflation expectations to lead to a distortion
in aggregate dynamics. For example, socially determined inflation expectations
will distort aggregate inflation and output when regions have heterogeneous eco-
nomic size, n, or pay heterogeneous relative attention to the expectations of the
other region, captured by Γi.

How large is the effect of allowing for socially determined inflation expecta-
tions, relative to a FIRE benchmark? A simple calibration exercise shows that
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Table 5: Model calibration
Parameter Value
Discount factor β 0.99
Intertemporal elasticity of substitution γ 1
Frisch elasticity of labor supply α 1
Varieties elasticity of substitution ν 2
Calvo parameter θ 0.75
Size of home region n 0.1
Local good preference in home region ϕH 0.69
Local good preference in foreign region ϕF 0.9656
Feedback to inflation rπ 1.5
Standard deviation of shocks σe = σu = σ 1

allowing for socially determined inflation expectations matters mainly when de-
mand shocks hit the economy. This finding follows from a standard parameteri-
zation as in Nakamura and Steinsson (2014) as reported in Table 4.2. We set the
intertemporal elasticity of substitution, γ, as well the Frisch elasticity of labor sup-
ply, α, equal to 1. The discount factor is set equal to β = 0.99 and the elasticity of
substitution across varieties equal to ν = 2.17 The Calvo parameter, θ, is set equal
to 0.75, implying that firms adjust their prices once a year. We set the size of the
home region to n = 0.1. The local good preference parameter for the home region
is set equal to ϕH = 0.69. The implied local good preference in the foreign region is
ϕF = 1− n(1− ϕH)/(1− n) = 0.9656. The interest rate response to aggregate infla-
tion is set equal to rπ = 1.5. Finally, all shocks are drawn from a standard normal
distribution, that is, σe = σu = 1.

Given this calibration, an economically significant impact effect arises in the
case of local supply shocks, while it is small for local demand shocks. Setting
ΓH = ΓF to our empirical estimate of 1 − 0.491 = 0.509 reported in column (4) of
Table 4, we find that the impact of a one-time home demand shock on output and
inflation is 0.11% and 0.18% lower compared to FIRE, respectively. The impact of
a one-time foreign demand shock on output is 0.11% and 0.18% higher compared
to FIRE, respectively. On the other hand, the impact of a one-time home supply

17Differently from Nakamura and Steinsson (2014), we assume that the production function is
linear in labor hours.
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shock on output and inflation is about 3.7% and 6.2% lower compared to FIRE,
respectively. By contrast, the impact of a one-time foreign supply shock on output
and inflation is about 3.7% and 6.2% higher compared to FIRE, respectively.

More generally, Figures 1 and 2 plot the heat maps of the difference between the
impact of various regional shocks on aggregate output and inflation for different
parameterizations of the socially determined inflation expectations parameters, ΓH

and ΓF. The effect of socially determined inflation expectations is negligible in
the case of demand shocks, but much more substantial in the case of local supply
shocks. Why? The reason is that supply shocks affect the terms of trade much
more than demand shocks when the regional Phillips curve slopes are sufficiently
low (κ = 0.0858 for the calibration in Table 4.2).18 Moreover, the effects of the ex-
pectations of others are largest as ΓH,ΓF → 0, that is, when consumers focus all
their attention on the other region’s inflation when forming expectations.

4.3 Welfare Implications

Socially determined inflation expectations unsurprisingly not only affect the dy-
namics of output and inflation, but also the optimal weight in a Taylor rule that
monetary policymakers place on regional inflation rates when aiming to minimize
distortions from the FIRE benchmark. This section shows that monetary policy
should optimally put more weight on the inflation rate of socially more connected
regions, a result reminiscent of open-economy findings such as Aoki (2001).

To derive this result, we assume that monetary policy is governed by the fol-
lowing generally parameterized Taylor rule:

R̂t = rπ(nψΠ̂Ht + (1 − ψn)Π̂Ft)

= rππ̂t + nrπ(1 − ψ)(x̂t − x̂t−1)
(25)

where the key parameter of interest is ψ, with ψ ≥ 0. When ψ = 1, policymak-
ers target aggregate inflation defined as nΠ̂Ht + (1 − n)Π̂Ft; whereas when ψ ̸= 1
policymakers target a slightly different measure of inflation where the weight as-

18We refer the reader to Lemma 1 for the minimum state variable solution for the terms of trade.
We also note that supply shocks have been normalized similarly to Smets and Wouters (2007) and
much of the related literature.
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Figure 1: Impact of Socially Determined Inflation Expectations on Output Relative
to FIRE

Note: Visualization of the effect of socially determined inflation expectations compared to FIRE for aggregate output, when
the model is calibrated as in Table 4.2. Star in black indicates the impact relative to FIRE when ΓH = ΓF = 1 − 0.491 = 0.509,
consistently with the empirical evidence reported in column (4) of Table 4. The dashed black line indicates the relationship
between ΓF and ΓF for which there is no belief asymmetry (∆ = 0).

signed to regional inflation rates are distorted by ψ. The above equation shows
that then, in the case of ψ ̸= 1, monetary policy systematically responds not only
to the inflation rate, but also the evolution of the terms of trade.

Should policymakers optimally set ψ ̸= 1 when inflation expectations are so-
cially determined? The optimal ψ∗ can be derived by considering welfare losses
that emerge from the socially distorted inflation expectations relative to FIRE. Specif-
ically,

ψ∗ = argmaxψ≥0W = −1
2

[
(E(ŷt − ŷFIRE

t )2 + (E(π̂t − π̂FIRE
t )2

]
An analytical expression for ψ∗ can be derived as the subsequent proposition shows
in the case when the Phillips curve slope κ for both regions is very close to 0:

Proposition 4. Suppose that the Phillips curve slope κ for both regions is very close to 0.
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Figure 2: Impact of Socially Determined Inflation Expectations on Inflation
Relative to FIRE

Note: Visualization of the effect of socially determined inflation expectations compared to FIRE for aggregate
inflation, when the model is calibrated as in Table 4.2. Star in black indicates the impact relative to FIRE when
ΓH = ΓF = 1 − 0.491 = 0.509, consistently with the empirical evidence reported in column (4) of Table 4. The dashed black
line indicates the relationship between ΓF and ΓF for which there is no belief asymmetry (∆ = 0).

Then, the optimal weight to the inflation rate of region H depends on the effective belief
asymmetry, in addition to its size n, and it is approximately given by

n(ψ∗ − 1) ≈ max
(
−n,−∆a

rπ

)
(26)

where a is the dependence of the current terms of trade on its past realization, ∆ = n(1 −
ΓH)− (1− n)(1− ΓF) ̸= 0 and rπ the systematic response of monetary policy to inflation.

Proof. See Appendix A.3.

Proposition 4 shows that monetary policy should optimally respond to the
terms of trade as long as there is effective belief asymmetry (∆ ̸= 0). As a result,
the inflation rate that monetary policy should target is slightly different from the
aggregate one, nΠ̂Ht + (1 − n)Π̂Ft, that only accounts for regional economic sizes.
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Importantly, more weight should be placed on the inflation rate of region H when
its weight in the social network ΓH = (1 − ΓF), is sufficiently high, relative to the
weight of region F. Analogously, region F should receive more weight as its weight
in the social network becomes relatively high.

How large are the distortions associated with socially determined inflation ex-
pectations quantitatively? Calibrating the model as suggested by Table 4.2 and set-
ting ΓH = ΓF = 0.509, we find that welfare losses equal 0.0297 if policy sets ψ = 1.
Monetary policy can minimize these losses by responding to the inflation rate of
the home region by more than what is granted by its size of n = 0.1 and to the infla-
tion rate of the foreign region by less than what is granted by its size of 1− n = 0.9.
More specifically, we find that the optimal value of ψ is 1.26. This implies that the
weight policy should assign to the inflation rate of the home region is 0.126 instead
of 0.1, whereas the weight it should assign to the inflation rate of the foreign region
is 0.874 instead of 0.9. Such optimal re-weighing also translates into different op-
timal aggregation weights for inflation rates of the goods produced in the two re-
gions. In particular, monetary policy should assign a weight equal to 0.117 (instead
of 0.1) to the inflation rate of goods produced in the home region and a weight 0.883
(instead of 0.9) to the inflation rate of goods produced in the foreign region.

5 Conclusion
Our analysis brings to the fore the idea that social networks can have an ef-

fect on the formation of inflation expectations. While other work has established
the importance of social networks in important contexts such as housing mar-
ket decisions, in this paper we focus on the expectations of a centrally important
macroeconomic variable for monetary policy—inflation expectations—and the as-
sociated macroeconomic implications. Our analysis shows empirically that con-
sumers form inflation expectations using information from their social network.
In an extension of the workhorse New Keynesian model, our analysis also shows
that this finding has quantitatively important implications for the dynamics of ag-
gregate output and inflation and the conduct of monetary policy.

Our findings open up new avenues for exploring the formation of inflation
expectations in the context of social networks. For example, future work might
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consider the context of stability and multiple equilibria, or the role of network
super-nodes. Such future work may benefit policymakers who aim to keep in-
flation expectations anchored or provide forward guidance, but currently do not
assign a role to social networks in doing so.
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A Appendix: Proofs

A.1 Backus-Smith condition derivation

We have that

λ̂F,t − λ̂H,t = EF,t
(
λ̂F,t+1 + it

)
− EH,t

(
λ̂H,t+1 + it

)
λ̂F,t − λ̂H,t =

∞

∑
k=0

EF,t (it+k)−
∞

∑
k=0

EH,t (it+k)

λ̂F,t − λ̂H,t =
∞

∑
k=0

EF,t (rt+i + ΠF,t+1+k)−
∞

∑
k=0

EH,t (rt+i + ΠH,t+1+k)

λ̂F,t − λ̂H,t =
∞

∑
k=0

(
EF,trt+k + EEoO

F,t ΠF,t+1+k

)
−

∞

∑
k=0

(
EH,trt+k + EEoO

H,t ΠH,t+1+k

)
λ̂F,t − λ̂H,t =

∞

∑
k=0

(EF,trt+k + EtΓFΠF,t+1+k + Et(1 − ΓF)ΠH,t+1+k)−

∞

∑
k=0

(EH,trt+k + EtΓHΠH,t+1+k + Et(1 − ΓH)ΠF,t+1+k)

λ̂F,t − λ̂H,t = (ΓF + ΓH − 2)
∞

∑
k=0

Et (ΠF,t+1+k − ΠH,t+1+k) +

∞

∑
k=0

(EF,trt+i + EtΠF,t+1+k)−
∞

∑
k=0

(EH,trt+k + EtΠH,t+1+k)

Assuming of equal initial wealth as Nakamura and Steinsson (2014), then ∑∞
k=0 (Etrt+i + EtΠF,t+1+k)−
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∑∞
k=0 (Etrt+k + EtΠH,t+1+k) = 0, this version of the model assumes expectations of

interest rate similar for both agents, then

λ̂F,t − λ̂H,t = (ΓF + ΓH − 2)
∞

∑
k=0

Et (PF,t+1+k − PF,t+k − (PH,t+1+k − PH,t+k))

Assuming that after a period N log-linearized inflation is zero:

Et
[(

Pj,t+1 − Pj,t
)
+
(

Pj,t+2 − Pj,t+1
)
+
(

Pj,t+3 − Pj,t+2
)
+ ...

]
= Et

[
Pj,t+N − Pj,t

]
Then,

λ̂j,t − λ̂i,t = (ΓF + ΓH − 2)Et
(

Pj,t+N − Pj,t − Pi,tN − Pi,t
)

Using the law of one price in steady state Pj,t+N − Pi,t+N = 0

λ̂F,t − λ̂H,t = (ΓF + ΓH − 2)
(

Pi,t − Pj,t
)

back to the original BS condition, and using x̂t = PH,t − PF,t we have that

−γĉi,t + γĉj,t = x̂t − (2 − ΓF − ΓH)x̂t

A.2 Proof of Proposition 2

Note that the distortions from the socially determined inflation expectations affect

regional and aggregate dynamics through the terms of trade. Moreover, the first

difference in the terms of trade is pinned down by the difference in the regional

inflation rates, namely
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x̂t − x̂t−1 = Π̂Ht − Π̂Ft

= κ(α + γ)(ĉHt − ĉFt) + βEt(Π̂H,t+1 − Π̂F,t+1) + κ(2 − ϕH − ϕF)(χ + χ̃)x̂t

−
κα(2 − ϕh − ϕ f )

γ
(êHt − êFt) + (ûHt − ûFt)

=
κ(α + γ)(1 − ΓH − ΓF)

γ
xt + βEt(x̂t+1 − x̂t) + κ(2 − ϕH − ϕF)(χ + χ̃)x̂t

+
κ(α(1 − ϕh − ϕ f ) + γ)

γ
(êHt − êFt) + (ûHt − ûFt)

(A.1)

As a result, the MSV solution for the terms of trade is such that

x̂t = ax̂t−1 + Bŝt

where ŝt =
[
êFt êHt ûHt ûFt

]′
∼MN (04×1,Σ) with Σ= diag

([
σ2

e σ2
e σ2

u σ2
u

])
.

If both regions are shocked by the same innovations, that is, if êHt = êFt and ûHt =

ûFt, then the terms of trade remains in steady state. As a result, the socially de-

termined inflation expectations do not have any effect on regional dynamics. By

contrast, if êHt ̸= êFt and/or ûHt ̸= ûFt, the terms of trade is affected by the local

shocks, implying that the socially determined inflation expectations will impact

regional dynamics.

A.3 Proof of Proposition 4

Before proving Proposition 4, we provide the minimum state variable solution of

the model in Lemma 1 below.

Lemma 1 (MSV solution of the model). The equilibrium dynamics under EoO for out-

put, inflation, and the terms of trade are described by the following equations:

ŷt = ay x̂t−1 + By ŝt

π̂t = aπ x̂t−1 + Bπ ŝt

x̂t = ax̂t−1 + Bŝt

(A.2)
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where ay, aπ ∈R; a ∈ (0,1); By, Bπ, B ∈R4; and ŝt =
[
êHt êFt ûHt ûFt

]′
∼ MN(0,Σ)

with Σ = diag
([

σ2
e σ2

e σ2
u σ2

u

])
. The MSV solution under FIRE is given by

ŷt = B̄y ŝt; π̂t = B̄π ŝt

x̂t = āx̂t−1 + B̄ŝt
(A.3)

Proof. We start off by solving for a and B in the equation describing the terms of

trade,

x̂t = ax̂t−1 + Bŝt

Using this expression in equation (A.1), and re-organizing terms, a is the solution

to the following quadratic equation

βa2 −
[

1 + β − κ

(
(2 − ϕH − ϕF)(χ + χ̃) +

(α + γ)

γ
(1 − ΓH − ΓF)

)]
︸ ︷︷ ︸

d

a + 1 = 0

Hence,

a =
d ±

√
d2 − 4β

2β

We assume that the process for the terms of trade is stationary, so that |a| < 1.

Furthermore, we assume that the Phillips curve slope is sufficiently small so that

d > β. As a result, the unique acceptable solution for a is given by

a =
d −

√
d2 − 4β

2β
(A.4)

We now turn to the solution for B:

(d − βa)B =


κ(α(1−ϕh−ϕ f )+γ)

γ

− κ(α(1−ϕh−ϕ f )+γ)

γ

1
−1


′

︸ ︷︷ ︸
M
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Therefore,

B =
2M

d +
√

d2 − 4β
(A.5)

Then, the solution for inflation and output, respectively, is given by

π̂t = aπ x̂t−1 + Bπ ŝt

ŷt = ay x̂t−1 + By ŝt
(A.6)

We now consider the more general policy rule, R̂t = rπ(nψπ̂Ht + (1 − nψ)π̂Ft. Ap-

plying the MSV solution above to the aggregate Euler equation and Phillips curve,

we have the following two expressions for output and inflation:

ŷt =

(
ay +

aπ + ∆(1 − a)
γ

)
xt −

rπaπ

γ
x̂t−1 +

nrπ(1 − ψ)

γ
(x̂t − x̂t−1)

+

−rπ

γ
Bπ +

1
γ

[
n 1 − n 0 0

]
︸ ︷︷ ︸

Be

 ŝt

π̂t = κ(α + γ)ayŷt + βaπ(ax̂t−1 + bŝt) +
[
0 0 n 1 − n

]
︸ ︷︷ ︸

Bu

ŝt

(A.7)

Then, the MSV solution coefficients are pinned down by the following system of

linear equations:

ay =
(1 − a)(1 − βa)(a∆ − nrπ(1 − ψ))

γ(1 − a)(1 − βa) + κ(α + γ)(rπ − a)

aπ =
κ(α + γ)

1 − βa
ay

Bπ =
(
κ(α + γ)By + βaπB + Bu

)
By =

1
γ

[
−rπBπ +

(
nrπ(1 − ψ) + γay + aπ + ∆(1 − a)

)
B + Be

]
(A.8)
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We can combine the expressions for By and Bπ as follows:[
By

Bπ

]′
=

[
By

Bπ

]′ [
04×4 κ(α + γ)I
− rπ

γ I 04×4

]
︸ ︷︷ ︸

Ω̃

+

[(
(nrπ(1 − ψ) + γay + aπ + ∆(1 − a))B + Be

)
βaπB + Bu

]′
︸ ︷︷ ︸

D

Therefore, in equilibrium, [
By

Bπ

]′
= D(I − Ω̃)−1 (A.9)

We denote the solution coefficients under FIRE with a bar on top. Setting ∆ = 0

and ψ = 1, we have that

āy = āπ = 0[
B̄y

B̄π

]′
=

[
Be

Bu

]′
(I − Ω̃)−1

(A.10)

Let δ = κ(α+γ)
1−βa . One can show that

By − B̄y =
nrπ(1 − ψ) + (γ + δ − βδrπ)ay + ∆(1 − a)

γ + rπκ(α + γ)
B = mB

Bπ − B̄π = (κ(α + γ)m + βδay)B

Therefore,

E(ŷt − ŷFIRE
t )2 = a2

yE(x2
t ) + m2BΣB′ =

[
a2

y

1 − a2 + m2

]
BΣB′

E(π̂t − π̂FIRE
t )2 = a2

πE(x2
t ) + (κ(α + γ)m + βδay)

2BΣB′

=

[
a2

π

1 − a2 + (κ(α + γ)m + βδay)
2
]

BΣB′

(A.11)
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Welfare gains are then given by

W =

(
−1

2
(1 + δ2)a2

y −
(1 − a2)

2

[
m2 + (κ(α + γ)m + βδay)

2
])

BΣB′

Hence,

∂W

∂ψ
= −

(
(1 + δ2)a′yay + (1 − a2)

[
mm′ + (κ(α + γ)m + βδay)(κ(α + γ)m′ + βδa′y)

])
BΣB′

where ay =
(1−a)(∆a−nrπ(1−ψ))

γ(1−a)+δ(rπ−a) and a′y =
nrπ(1−a)

γ(1−a)+δ(rπ−a) .

As κ → 0, we have that δ → 0 and

ay =
∆a − nrπ(1 − ψ)

γ

a′y =
nrπ

γ

m′ =
−nrπ + γa′y)

γ
= 0

Hence, as κ ≈ 0, ψ∗ − 1
(
−1,− ∆a

nrπ

)
.
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Online Appendix

B Theoretical Framework for the Expectations of Oth-

ers
This section outlines a model for the formation of inflation expectations in the

presence of social networks. The framework we propose extends the memory and

recall model of Bordalo et al. (2022) and Bordalo et al. (2023) by incorporating the

feature of social interaction. This model aims to provide a micro-foundation of

inflation expectations formation that can discipline the empirical strategy and the

subsequent macroeconomic model choice of the expectation formation process. We

start by describing a baseline setting in which individuals in the economy do not

socially interact (similar to Bordalo et al. (2022) and Bordalo et al. (2023)). We then

allow individuals to socially interact and exchange experiences, deriving a close

form to estimate the influence of social networks in the expectation formation pro-

cess.

B.1 Baseline: No Social Interaction

Consider an individual i, who has stored a set of personal experiences in her mem-

ory database Ei of size |Ei|. For simplicity, we split the set of experiences of i into

three mutually exclusive subsets containing high-inflation experiences, EH
i , low in-

flation experiences, EL
i , and experiences that are irrelevant to high or low inflation

experiences, EO
i . We would like to assess the probability that individual i recalls

experiences that are similar to a particular hypothesis k ∈ K = {H, L}, where H

denotes the hypothesis of high inflation and L that of low inflation. To assess the

probability of recall, we define a similarity function between two events ui ∈ Ei and

vi ∈ Ei, that is, Si(ui,vi) : Ei × Ei →
[
0 S̄i

]
, that quantifies the similarity between

individual i’s experience ui and vi. The similarity between any two experiences ui

and vi increases in the number of shared features between the two experiences, and

the highest value of similarity, S̄i, is achieved when ui = vi. We purposely abstract
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from providing a functional form for Si to warrant generality of our results.19

Based on this setup, we define recall probabilities of experiences and link them

to expectations as follows. First, assume that similarity between an experience ei

and a subset of experiences, A ⊂ Ei, is given by Si(ei, A) = ∑ui∈A
Si(ei,ui)

|A| . Further,

assume that the probability r(ei,k) that individual i recalls experience ei, when

presented with hypothesis k, is given by the similarity between ei and event k as

a share of the total similarity between all the experiences in the memory database

and hypothesis k, that is, r(ei,k) =
Si(ei,k)

∑e∈Ei
S(e,k) .

The probability that individual i recalls experiences similar to hypothesis k ∈ K

is given by the total similarity between experiences related to k and hypothesis k as

a share of the total similarity between all the experiences in the memory database

and hypothesis k, that is,

ri(k) =
∑e∈Ek

i
Si(e,k)

∑e∈EH
i

Si(e,k) + ∑e∈EL
i

Si(e,k) + ∑e∈EO
i

Si(e,k)
(B.1)

Notably, an enlargement of experiences related to k leads to a higher recall proba-

bility of hypothesis k, but experiences EO
i unrelated to k imply interference for ri(k).

We now link recall probabilities with the focal object of the current paper: in-

flation expectations. Consistent with our two hypotheses of interest and without

loss of generality, inflation can be characterized as a process with two states: a high

regime (H) with inflation equal to π̄H and a low regime (L) with inflation equal to

π̄L. Assume that the presence of the two regimes and the inflation levels associated

with each regime are common knowledge.

Further, given probabilities of recall, assume that individual i draws Ti experi-

ences with replacement from her memory database, Ei. Let Ri(k) denote the num-

ber of times that i successfully recalls events aligned with hypothesis k ∈ {H, L};

that is, Ri(k) is binomially distributed as Ri(k) ∼ Bin(Ti,ri(k)). Then, individ-

ual i’s perceived probability that regime k will realize is pi(k) =
Ri(k)

Ri(H)+Ri(L) for any

19The functional form of similarity can also be unique to individual i.
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k ∈ {H, L}. Her expected inflation is given by

πe
i = pi(H)π̄H + (1 − pi(H))π̄L = pi(H)(π̄H − π̄L) + π̄L (B.2)

where pi(H) is the source of heterogeneous expectations in this simple setting.

In this setup, an increase in ri(H) increases, on average, the odds of successful

recalls of experiences aligned with hypothesis H, that is, Ri(H). An increase in the

latter raises the probability that individual i assigns to the high-inflation regime,

thus putting upward pressure on her inflation expectations, as shown in equation

(B.2). Proposition 5 formalizes this positive relationship between inflation and the

recall probability of events linked to the hypothesis of high inflation.

Proposition 5. Individual inflation expectations πe
i are increasing in the recall probability

of the high-inflation regime.

Proof. See Online Appendix B.4.1.

B.2 Social Interaction

Now suppose that individual i socially interacts with other individuals j∈ {1,2, ..., i−
1, i + 1, ..., Ni + 1}, such that every individual j shares experiences with i. Ni de-

notes the total number of individuals who i interact with. We denote the set of

experiences that individual j shares with individual i by Ej→i (without putting any

restrictions on the flow of information in the reverse direction). Experiences shared

by individual j are categorized into three mutually exclusive subsets: high infla-

tion experiences, EH
j→i, low inflation experiences, EL

j→i, and experiences irrelevant

to high or low inflation, EO
j→i.

We assume that, when interacting with others, individual i’s assessment of sim-

ilarity between k-related experiences shared by any individual j and any hypothe-

sis k is conditional on the share of common demographic characteristics between i

and j, δij. Therefore, the similarity between any experience e ∈ Ek
j→i and hypothesis

k is given by Si(e,k | δij). This assumption allows for a heterogeneous function to
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judge the similarity between a given hypothesis and experiences shared by others

that explicitly depends on characteristics of other individuals in the network.20

When computing recall probabilities, we assume that individual i assigns weight

γi to her own experiences and weight (1 − γi) to everyone else’s experiences. We

further assume that she assigns weight ωij ∈ [0,1] to experiences shared by in-

dividual j that depends on the share of common demographic factors between

individual i and j, and that is such that ∑i ωij = 1. Let r̂i(k) denote individual

i’s probability of recalling experiences linked to hypothesis k ∈ {H, L} when she

socially interacts with others, described by:

r̂i(k) =
γi ∑e∈Ek

i
Si(e,k) + (1 − γi)∑i ωij ∑e∈Ek

j→i
Si(e,k | δij)

γi ∑e∈Ei
Si(e,k) + (1 − γi)∑i ωij ∑e∈Ej→i

Si(e,k | δij)
(B.3)

where ∑e∈Ei
Si(e,k) = ∑e∈EH

i
Si(e,k) + ∑e∈EL

i
Si(e,k) + ∑e∈EO

i
Si(e,k) denotes total

own-experience similarity and ∑e∈Ej→i
Si(e,k | δij) =∑e∈EH

j→i
Si(e,k | δij)+∑e∈EL

j→i
Si(e,k |

δij) + ∑e∈EO
j→i

Si(e,k | δij) denotes total shared-experience similarity. In the subse-

quent analysis, we assume without loss of generality that individual i always pays

some attention to her own personal experiences, that is, γi ∈ (0,1] and that the

personal as well as the network memory databases contain both k-relevant and

k-irrelevant experiences, so that ∑e∈EH
i

Si(e,k) > 0 for any k ∈ {H, L}.

To understand the effects that experiences shared on social networks have for

individual inflation expectations, we decompose the recall probability into a per-

20Using common demographic characteristics is supported by the empirical evidence that
individuals with common demographic characteristics, such as gender and age group, share
similar experiences in terms of inflation (see, for instance, Malmendier and Nagel (2016), D’Acunto
et al. (2021b), Hajdini et al. (2022a), and Pedemonte et al. (2023), among others). Golub and Jackson
(2012) discuss the role that homophily plays for the convergence of beliefs to a consensus. More
generally, others, such as McPherson et al. (2001) have established the role of homophily in the
network formation process.
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sonal and network component as follows:

r̂i(k) =
γiSk

i

γiSi + (1 − γi)(Sk
δi.
+ SK\k

δi.
)︸ ︷︷ ︸

personal

+
(1 − γi)Sk

δi.

γiSi + (1 − γi)(Sk
δi.
+ SK\k

δi.
)︸ ︷︷ ︸

network

(B.4)

where Sk
i = ∑e∈Ek

i
Si(e,k) denotes the total similarity of relevant own experiences;

SK\k
i = ∑e∈EK\k

i
Si(e,k) denotes the total similarity of irrelevant own experiences;

Sk
δi.
= ∑i ωij ∑e∈Ek

j→i
Si(e,k | δij) denotes the total similarity of shared relevant expe-

riences; and SK\k
δi.

= ∑i ωij ∑e∈EK\k
j→i

Si(e,k | δij) denotes the total similarity of shared

irrelevant experiences. It is clear that the network will have an effect on the recall

probability of individual i if and only if she pays attention to experiences shared

on the network, that is, if and only if γi < 1. Conditional on γi < 1, two oppos-

ing forces arise when the network shares k-relevant experiences, that is, when Sk
δi.

increases. On the one hand, the personal component declines since it becomes

more difficult to retrieve personal k-relevant experiences. On the other hand, the

network component increases since it becomes easier to retrieve k-relevant experi-

ences that are shared from the network. On net, it is straightforward to show that

the latter effect always prevails since ∂r̂i(k)
∂Sk

δi.

> 0. By contrast, network k-irrelevant

experiences increase SK\k
δi.

and thus interfere with both the personal and network

components of the recall probability of hypothesis k, that is, ∂r̂i(k)

∂SK\k
δi.

< 0. Put dif-

ferently, such experiences make it more difficult for k-relevant experiences to be

retrieved from the memory database. Proposition 6 formalizes this analysis.

Proposition 6. Consider individual i’s recall probability of hypothesis k in equation (B.4).

Then, the following statements are true:

1. The social network has an effect on the recall probability of individual i if and only if

individual i allocates attention to experiences shared by others, that is, if and only if

γi ∈ (0,1).
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2. Suppose that i assigns some weight to the experiences shared by others, that is,

γi ∈ (0,1). Then,
∂r̂i(k)
∂Sk

δi.

> 0 and
∂r̂i(k)

∂SK\k
δi.

< 0 (B.5)

that is, additional k-relevant experiences increase the recall probability r̂i(k), whereas

additional k-irrelevant experiences decrease recall probability r̂i(k).

Proof. See Online Appendix B.4.2.

Our ultimate goal is to understand how the network affects inflation expec-

tations. Consider two individuals i and j that are connected via the network.

Suppose that individual j adds a new personal experience that is relevant to the

high-inflation regime into her memory database and she shares the experience

with individual i. From Proposition 5, the inflation expectations of individual j

increase due to an increase in her subjective probability assigned to the high infla-

tion regime, pj(H). Then, as long as γi < 1 and ωij ̸= 0, this exogenous increase in

the expectations of i’s network should lead to an increase in the individual inflation

expectations of individual i.

Corollary 2 formalizes this result. It is important that, conditional on the indi-

vidual paying attention to the network, increases in the inflation expectations of

others should increase individual inflation expectations.

Corollary 2. Suppose that individual i pays attention to her network and to the experi-

ences that j shares, that is, γi < 1 and ωij ̸= 0. Suppose further that the inflation expec-

tations of j increase because she observes an additional H-relevant personal experience.

Then, this increase in the inflation expectations of individual j will lead to an increase in

the inflation expectations of i.

Proof. Follows directly from Propositions 5 and 6.

52



B.3 Testable Implications for Inflation Expectations

How predictions of the model map into a fairly generally defined empirical envi-

ronment? Following Proposition 6, if a researcher has access to data on the inflation

expectations of an individual or region i, πe
i , who is potentially socially connected

to individual or region j ∈ {1,2, ..., i − 1, i + 1, ..., N, N + 1}, combined with data on

the intensity of the network connections ωij, then one can estimate the following

specification to test for the importance of expectations of others:

πe
i = α + β ×

N

∑
j=1

ωijπ
e
j + εi (B.6)

This specification leads to the following Testable Implication: β > 0: social in-

teraction has a positive effect on inflation expectations if people pay attention to

experiences shared by others (see Proposition 6).

B.4 Proofs

B.4.1 Proof of Proposition 5

Recall that Ri(H) ∼ Bin(Ti,ri(H)) and that pi(H) = Ri(H)
Ri(H)+Ri(L) . By the central

limit theorem, we have that zH
i = Ri(H)−Tiri(H)√

Ti
∼N (0,ri(H)(1 − ri(H)). Therefore,

limTi→∞ pi(H) = limTi→∞

zH
i√
Ti
+ri(H)

zH
i√
Ti
+ri(H)+

zL
i√
Ti
+ri(L)

= ri(H)
ri(H)+ri(L) . If the recall probability

of the high-inflation regime increases, then the perceived probability of regime H

increases leading to an increase inflation expectations.

B.4.2 Proof of Proposition 6

Consider individual j’s recall probability of hypothesis k

r̂i(k) =
γiSk

i + (1 − γi)Sk
δi.

γiSi + (1 − γi)Sδi.

(B.7)
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Then, the response of r̂i(k) to a change in Sk
δi.

is given by

∂r̂i(k)
∂Sk

δi.

= (1 − γi)
γiS

K\k
i + (1 − γi)S

K\k
δi.

γiSi + (1 − γi)Sδi.

≥ 0 (B.8)

Clearly, ∂r̂i(k)
∂Sk

δi.

> 0 if γi < 1 and ∂r̂i(k)
∂Sk

δi.

= 0 if γi = 1.

C The Reflection Problem

C.1 Baseline

Consider the following generic regression specification:

πe
t = α + βΩπe

t + εt

where πe
t =
[
πe

1t πe
2t ... πe

Nt

]′
embeds inflation expectations in county 1 through

county N, εt =
[
ε1t ... εNt

]′
denotes a set of county-specific i.i.d. shocks to infla-

tion expectations such that εit ∼N (0,σ2
i ) for any i ∈ {1,2, ..., N}, α =

[
α1 ... αN

]′
denotes a vector of constants (county fixed effects), β denotes a scalar, and Ω is an

N × N matrix with 0-diagonal and with row elements summing to 1. We re-write

the equation above as

πe
t − π̄︸ ︷︷ ︸

yt

= β [Ω(πe
t − π̄)]︸ ︷︷ ︸

Ωyt

+εt

where π̄ =
[
π̄e

1 π̄e
2 ... π̄e

N

]′
. Note that yt = (I − βΩ)−1 εt = Mεt. Let β̂ be the

OLS estimate of β. Then,

β̂ = β +
[
(y′tΩ

′Ωyt)
−1(y′tΩεt)

]
= β +

[
(ε′tM

′Ω′ΩMεt)
−1(ε′tM

′Ωεt)
]
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where

(ε′tM
′Ωεt) =

[
ε1t ε2t ... εNt

]


m11 m21 ... mN1

m12 0 ... mN2

... ... ... ...
m1N m2N ... mNN




0 ω12 ... ω1N

ω21 0 ... ω2N

... ... ... ...
ωN1 ωN2 ... 0




ε1t

ε2t

...
εNt



=
[
∑i m1iεit ∑i m2iεit ... ∑i mNiεit

]


∑i ̸=1 ω1iεit

∑i ̸=2 ω2iεit

...

∑i ̸=N ωNiεit

 =
N

∑
j=1

(
∑
i ̸=1

ωjimjiσ
2
i

)
̸= 0

If β = 0, then yt = εt and β̂ =
[
(ε′tΩ

′Ωεt)−1(ε′tΩεt)
]
, where

(ε′tΩεt) =
[
ε1t ε2t ... εNt

]


0 ω12 ... ω1N

ω21 0 ... ω2N

... ... ... ...
ωN1 ωN2 ... 0




ε1t

ε2t

...
εNt

=
[
ε1t ε2t ... εNt

]


∑i ̸=1 ω1iεit

∑i ̸=2 ω2iεit

...

∑i ̸=N ωNiεit

= 0

with the final equality following from the fact that the error terms are uncorrelated

across counties. Therefore, if β = 0, the OLS estimate of it should also be equal to 0.

C.2 Time Fixed Effects

Now suppose the true data generating process is given by the more general regres-

sion specification with time and county fixed effects:

πe
t = α + γtLN + βΩπe

t + εt (C.1)

where LN = 1N×1 is a vector of 1s of length N, γt is the time fixed effect, and

all the other variables are as defined in Online Appendix C.1. Let π̄N. =
1
T

[
∑T

t=1 πe
1t ∑T

t=1 πe
2t ... ∑T

t=1 πe
Nt

]′
,

π̄.t =
(

1
N ∑N

n=1 πe
nt

)
LN, and π̄.. =

(
1

NT ∑N
n=1 ∑T

t=1 πe
nt

)
LN. Then, following a strat-
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egy similar to Wallace and Hussain (1969), we re-write the equation above as

πe
t − π̄.t − π̄N. + π̄..︸ ︷︷ ︸

yt

= β [Ω(πe
t − π̄.t − π̄N. + π̄..)]︸ ︷︷ ︸

Ωyt

+εt

Note that yt = (I − βΩ)−1 εt = Mεt. Let β̂ be the OLS estimate of β, and as shown

in Online Appendix C.1,

β̂ = β +
[
(y′tΩ

′Ωyt)
−1(y′tΩεt)

]
= β +

[
(ε′tM

′Ω′ΩMεt)
−1(ε′tM

′Ωεt)
]

︸ ︷︷ ︸
bias

What is important to note from the equation above is that even if the econome-

trician appropriately accounts for the time and county fixed effects (as in the true

data generating process), the estimate of β will suffer from a bias.21

In an alternative exercise, suppose that the true data generating process is given

by the equation in (C.2), but the econometrician does not account for time fixed ef-

fects, that is, one runs the following regression instead:

πe
t − π̄N.︸ ︷︷ ︸

ŷt

= β [Ω(πe
t − π̄N.)]︸ ︷︷ ︸
Ωŷt

+ut (C.2)

where ut = εt + (I − βΩ)(π̄.t − π̄..) = εt + M−1(π̄.t − π̄..) = εt + M−1xt. Then, the

OLS estimate of β is given by

β̂ = β +
[
(u′

tM
′Ω′ΩMut)

−1(u′
tM

′Ωut)
]

︸ ︷︷ ︸
bias

= β +

[(
(εt + M−1xt)

′M′Ω′ΩM(εt + M−1xt)
)−1(

(εt + M−1xt)
′M′Ω(εt + M−1xt)

)]
︸ ︷︷ ︸

bias

= β +
[(

ε′tM
′Ω′ΩMεt + x′tΩ

′Ωxt
)−1

(
ε′tM

′Ωεt + x′tΩM−1xt

)]
︸ ︷︷ ︸

bias
21See Lee and Yu (2010) as well for a detailed discussion on the biases that arise in spatial

models with time and individual fixed effects.
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where the third equality follows from the fact that xt must be uncorrelated with

εt. Now the bias is similar to what we identified in Online Appendix C.1, with the

additional terms coming from the fact that we are not accounting for time fixed

effects. What this Online Appendix highlights is that, even if one appropriately

accounts for all fixed effects (time and county), the reflection problem still arises.

C.3 Time Fixed Effect with Constant Weights and Bias

Here, we explicitly show the OLS estimate of the network effect under different as-

sumptions for the weights matrix and demonstrate how the inclusion of the time

fixed effect affects the results.

C.3.1 No Time Fixed Effect

We start with the basic problem

πe
t = βΩπe

t + εt (C.3)

with

Ω =


0 ω12 ... ω1N

ω21 0 ... ω2N

... ... ... ...
ωN1 ωN2 ... 0


This setup captures the main estimated specification in the text.

Then, we have that

πe
t = (I − βΩ)−1 εt

and

βOLS =
[
(Ωπe

t )
′ (Ωπe

t )
]−1

(Ωπe
t )

′ πe
t

or

βOLS =

[(
Ω (I − βΩ)−1 εt

)′(
Ω (I − βΩ)−1 εt

)]−1(
Ω (I − βΩ)−1 εt

)′
πe

t
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C.3.2 With Time Fixed Effect

We now define the matrix

P =


1
N

1
N ... 1

N
1
N

1
N ... 1

N
... ... ... ...
1
N

1
N ... 1

N


So the average expectation at each period of time is:

Pπe
t = βPΩπe

t + Pεt

So a regression with time-fixed effects is equivalent to a regression on:

(I − P)πe
t = β (I − P)Ωπe

t + (I − P)εt

or

πe,TFE
t = β (Ω − PΩ)πe

t + εe,TFE
t (C.4)

Then,

βOLS,TFE =
[
((Ω − PΩ)πe

t )
′ ((Ω − PΩ)πe

t )
]−1

((Ω − PΩ)πe
t )

′ πe,TFE
t

or

βOLS,TFE =
[
((Ω − PΩ)πe

t )
′ ((Ω − PΩ)πe

t )
]−1

(πe
t
′ (Ω − PΩ)′ (I − P)πe

t

Then,

βOLS,TFE =
[
πe

t
′ (Ω − PΩ)′ (Ω − PΩ)πe

t
]−1

πe
t
′ (Ω − PΩ)′ (I − P)πe

t

Special Case:

To derive a closed-form expression for β, we assume an extreme case where the
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network is constant and equal for everybody, with weights 1
N−1 , so

Ω =


0 1

N−1 ... 1
N−1

1
N−1 0 ... 1

N−1

... ... ... ...
1

N−1
1

N−1 ... 0


It is direct to show that PΩ = 1

N ∗ P, then (Ω − PΩ) = (Ω − P). Further, it is

direct to show that (I − P) = (1 − N) ∗ (Ω − P) or (I − P) = (1 − N) ∗ (Ω − PΩ).

We replace this value in the definition if βOLS,TFE:

βOLS,TFE =
[
πe

t
′ (Ω − PΩ)′ (Ω − PΩ)πe

t
]−1

πe
t
′ (Ω − PΩ)′ (I − P)πe

t

βOLS,TFE =
[
πe

t
′ (Ω − PΩ)′ (Ω − PΩ)πe

t
]−1

πe
t
′ (Ω − PΩ)′ (1 − N) ∗ (Ω − PΩ)πe

t

βOLS,TFE = (1 − N) ∗
[
πe

t
′ (Ω − PΩ)′ (Ω − PΩ)πe

t
]−1

πe
t
′ (Ω − PΩ)′ (Ω − PΩ)πe

t

Then,

βOLS,TFE = −(N − 1)

In this case βOLS,TFE is constant, negative and doesn’t depend on the value of β.

The network structure in our case is not constant, so that case is a benchmark.

To explore the potential biases from the inclusion of the time FE, we simulate data

and a network structure. The network structure come from a Beta distribution

with different parameters. In one case, the network will be drawn from a Beta(1,1)

(uniform distribution), then a Beta(1,10) and finally a Beta(1,20), therefore the dis-

tribution will be moving more to an extreme value distribution, with less common

nodes. The data-generating process comes from

πe
t = (I − βΩ)−1 εt
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where εt =
[
ε1,t, ε2,t, ..., εN,t

]′
will have two forms, one where εI

t =
[
ε1t ... εNt

]′
denotes a set of county-specific i.i.d. shocks to inflation expectations such that

εit ∼N (0,σε2). In the other case, we also have a case where there is a common time

shock, so εT
t = εI

t + ut
⊗

1N,1, with ut =
[
u1,u2, ...,uT

]′
, a Tx1 matrix that contains

time shocks with ut ∼N (0,σ2
u). We use σε = 1 and σu = 0.1, so σε

σu
is similar to what

the variation in time fixed effects in the data look like compared to the residuals on

the data from that regression. We use β = 0.3, N = 300 and T = 100 and simulate

100 times, keeping the network constant. Figure 3 shows the results without time

FE and Figure 4 shows the result with time FE.

Figure 3: Regression Results without Fixed Effects

Note: The figure shows the results of the regression (C.3) of the data simulated as described in the text. The first row shows
results of simulations without a common time shock. The second row shows results of a simulation with a common time
shock that is 0.1 the size of the individual shock, and the last row shows results of a simulation with a common time shock
that is 0.5 the size of the individual shock. All regressions do not include a time fixed effect.
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Figure 4: Regression Results with Fixed Effects

Note: The figure shows the results of the regression (C.4) of the data simulated as described in the text. The first row shows
results of simulations without a common time shock. The second row simulation with a common time shock that is 0.1 the
size of the individual shock and the last row shows results of a simulation with a common time shock that is 0.5 the size
of the individual shock. All regressions include a time fixed effect.

We can see that, from the extreme case of complete homogeneity in the net-

work, to the uniform distribution case, there are some similarities. When there

is no time shock (top left panel in both figures), the OLS without a fixed effect is

positively biased, but not by much. In the case of the time FE, there is a strong

negative bias that leads the coefficient to negative values. This effect is present in

the uniform distribution case, regardless of whether there is a time common shock

or not. This effect is smaller when the distribution of the network changes. We

can see that in the case of the Beta(1,100) distribution, the bias is still negative, but

very close to the true value. With a time shock, the regression without a time fixed

effect is biased and goes to 1.
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These results speak directly to the results in Tables 5 and 10. Column (5) of

Table 5 is similar to Columns (2), (4) and (6) in Table 10: all regressions have time

fixed effects, but in Columns (2), (4) and (6) of Table 10 we drop counties that are

spatially close. By doing that, we are effectively moving the distribution of shares

closer to an extreme value of one, as we are inputting a zero share to a group of

counties in the common network. In those cases, the regression with the time fixed

effect results in a less biased estimate, even when there is no aggregate time shock.

Something similar happens in Section 3.2, when we split the sample by demo-

graphics. Because of these issues, we use the first OLS results to show the impor-

tance of the network, but the results in Section 3.3, where we use an instrumental

variable approach, using county and gender variation, will be the coefficient that

would help us to obtain the unbiased estimate.

D Additional Figures

D.1 Social Connectedness Weights: Examples

We consider the social connectedness of Cuyahoga County, where Cleveland, Ohio

is located, with other counties across the United States. Figure 5 illustrates this

social connectedness through a heat map depicting the weights (ωc,k) for c=Cleveland.

The color scheme ranges from light yellow to red, with red depicting counties that

hold greater social significance for Cleveland. We observe three distinct patterns.

First, geography plays a significant role, with Cleveland showing stronger connec-

tions to nearby counties. Second, we also observe robust social links with distant

counties. For instance, individuals residing in Hillsborough, Florida (Tampa) and

Clark County, Nevada (Las Vegas). Third, there is substantial heterogeneity in

social connectedness. This is the kind of variability that we exploit in the paper.
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Figure 5: Social Connectedness of Cleveland to Other Counties (ωc=Cleveland,k)
Exposure of Cleveland to other counties

Source: Facebook SCI Weights
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Note: The yellow-to-red color scale represents the degree to which Cleveland is socially connected to other counties, based

on ωCleveland,k . Red indicates higher ωCleveland,k . Source: Social Connectedness Index

In reverse, we also present the social connectedness of other counties to Cuya-

hoga County, Ohio. The heat map in Figure 6 shows the weights ωc,k for k =

Cleveland. Again, as in the illustration above, the three patterns also emerge in

this case.

Figure 6: Social Connectedness of Each County to Cleveland (ωc,Cleveland)
Social Connectedness to Cleveland

Source: Facebook SCI Weights
0 500 1000 1500 km
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0.00019 to 0.00025
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0.00037 to 0.10662

Cuyahoga County 
(Cleveland)

Note: The yellow-to-red color scale represents the degree to which counties are socially connected to Cleveland, based on

ωc,Cleveland. Red indicates higher ωc,Cleveland. Source: Social Connectedness Index

Below we show similar maps for other counties such as Cambridge, and Los
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Angeles.

Figure 7: Social Connectedness of Each County to Cambridge (ωc,Cambridge)
  Cambridge

Source: Facebook SCI Weights
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Note: The yellow-to-red color scale represents the degree to which counties are socially connected to Cambridge, based on

ωc,Cambridge. Red indicates higher ωc,Cambridge. Source: Social Connectedness Index

Figure 8: Social Connectedness of Each County to Los Angeles (ωc,LA)
Facebook SCI Weights

Source: Facebook Social Connectedness Weights
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Note: The yellow-to-red color scale represents the degree to which counties are socially connected to Los Angeles, based on

ωc,LA. Red indicates higher ωc,LA. Source: Social Connectedness Index
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D.2 Other Additional Figures

Figure 9: Correlation between SCI and Own Car Commuting Shares
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Note: The figure shows coefficient and confidence interval of βi in regressions ωij = αi + βi × Commj + εi
j, where the depen-

dent variables are the weights of a given county with the others ωij and the independent variable is the share of households

that use their own car to commute in the other county Commj. The blue dots are the point estimates and the grey lines

represent 99 percent confident intervals.

E Additional Evidence: County-Level Evidence
We find evidence for the importance of the social network for the expectations

formation process at the county level. We estimate the following equation:

πe
c,t = αc + γt + β ∑

k ̸=c
ωc,kπe

k,t + εc,t (E.1)

where πe
c,t denotes the average inflation expectations in county c in month t. Weights

ωc,k capture the linkages in the social network between county c and county k. αc

denotes a county fixed effect, γt denotes a time fixed effect. The coefficient β is

our main coefficient of interest. It captures the relationship between inflation ex-

pectations, πe
c,t, and inflation expectations in the social network, ∑k ̸=c ωc,kπe

k,t. All

estimated specifications of equation E.1 cluster standard errors at the county level.
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Table 6 lists the different specifications and associated estimates of β across its

columns.

Table 6: Network Effect at the County Level

(1) (2) (3) (4) (5) (6)
Expectations of Others 0.644*** 0.268*** 0.619*** 0.274*** 0.046** 0.032*

(0.019) (0.017) (0.019) (0.016) (0.018) (0.017)
Sample N>10 All N>10 All N>10 All
Weights Yes No Yes No Yes No
County FE No No No Yes Yes Yes
Time FE No No No No Yes Yes
Observations 29,465 74,534 29,268 74,488 29,268 74,488
R-squared 0.125 0.007 0.384 0.173 0.433 0.188

Note: The table shows the results of regression (E.1), where the dependent πe
c,t is the average inflation expectations of a county

c at time t. Columns (1), (3), and (5) uses only counties at times where they have at least 10 observations (N > 10) and weights
the regression by the number of responses in each period (Weights = Yes). Standard errors are clustered at the county level.

F Other Additional Tables

Table 7: Individual Inflation Expectations and the Inflation Expectations of Others,
Unweighted

(1) (2) (3) (4) (5) (6) (7) (8)
Expectations of Others 0.248*** 0.071*** 0.339*** 0.046** 0.027** 0.028** 0.024** 0.025**

(0.008) (0.012) (0.012) (0.018) (0.011) (0.011) (0.011) (0.011)
County Expectations 0.615*** 0.594*** 0.453*** 0.406*** 0.395*** 0.387*** 0.383***

(0.010) (0.012) (0.008) (0.011) (0.010) (0.009) (0.008)
Time FE No Yes No Yes Yes Yes Yes Yes
County FE No No Yes Yes Yes Yes Yes Yes
Demographic FE No No No No No Yes Yes Yes
Demographic-Time FE No No No No No No Yes Yes
Combined Dem-Time FE No No No No No No No Yes
Observations 1,753,030 1,753,030 1,753,030 1,753,030 1,753,030 1,752,240 1,752,240 1,752,240
R-squared 0.024 0.024 0.027 0.023 0.027 0.042 0.043 0.048

Note. The table shows results of regression (3). The dependent πe
i,c,t is the inflation expectations of individual i from county

c at time t. We use county-time units with more than 10 observations. Demographics FE are income, age, politics and gender
at the individual level. Combined Dem-Time FE is a time FE interacted with the combination of demographic characteristics
that an individual has. Standard errors are clustered at the county level.
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Table 8: Individual Inflation Expectations and the Inflation Expectations of Others:
Population Weights

(1) (2) (3) (4) (5) (6) (7) (8)
Expectations of Others 0.250*** 0.167*** 0.341*** 0.090*** 0.047*** 0.063*** 0.053*** 0.059***

(0.050) (0.038) (0.057) (0.033) (0.018) (0.019) (0.019) (0.021)
County Expectations 0.674*** 0.655*** 0.523*** 0.475*** 0.458*** 0.419*** 0.407***

(0.044) (0.036) (0.043) (0.030) (0.027) (0.017) (0.016)
Time FE No Yes No Yes Yes Yes Yes Yes
County FE No No Yes Yes Yes Yes Yes Yes
Demographic FE No No No No No Yes Yes Yes
Demographic-Time FE No No No No No No Yes Yes
Combined Dem-Time FE No No No No No No No Yes
Observations 1,926,282 1,926,282 1,926,282 1,926,282 1,926,282 1,926,282 1,926,282 1,926,282
R-squared 0.013 0.013 0.14 0.012 0.014 0.030 0.032 0.044

Note. The table shows results of regression (3). The dependent πe
i,c,t is the inflation expectations of individual i from county

c at time t. We use county-time units with more than 10 observations. Demographics FE are income, age, politics and
gender at the individual level. Combined Dem-Time FE is a time FE interacted with the combination of demographic
characteristics that an individual has. Standard errors are clustered at the county level. We weight the regressions by the
county population.

Table 9: Individual Inflation Expectations and the Inflation Expectations of Others:
State Cluster

(1) (2) (3) (4) (5) (6) (7) (8)
Expectations of Others 0.194*** 0.176*** 0.252*** 0.115* 0.051** 0.068*** 0.058** 0.059***

(0.041) (0.049) (0.071) (0.060) (0.022) (0.024) (0.024) (0.022)
County Expectations 0.755*** 0.732*** 0.603*** 0.557*** 0.542*** 0.469*** 0.454***

(0.048) (0.044) (0.060) (0.055) (0.056) (0.025) (0.020)
Constant 0.111 0.439 0.718*** 6.338*** 2.805*** 2.763*** 3.385*** 3.493***

(0.110) (0.773) (0.225) (0.521) (0.539) (0.559) (0.362) (0.303)
Time FE No Yes No Yes Yes Yes Yes Yes
County FE No No Yes Yes Yes Yes Yes Yes
Demographic FE No No No No No Yes Yes Yes
Demographic-Time FE No No No No No No Yes Yes
Combined Dem-Time FE No No No No No No No Yes
Observations 1,926,282 1,926,282 1,926,282 1,936,032 1,926,282 1,925,393 1,925,393 1,925,393
R-squared 0.017 0.017 0.017 0.014 0.017 0.033 0.036 0.049

Note. The table shows the results of regression (3), where the dependent πe
i,c,t is the inflation expectations of individual i

who answers from county c at time t. Observations are weighted by the number of responses in a county in each period.
Demographics fixed effects are the income, age, politics and gender definitions used in the paper and are at the individual
level. Combined Dem-Time FE is a time fixed effect interacted by the combination of demographic characteristics that an
individual has (for example, male-<35 yo, <100k, independent fixed effect interacted by a time fixed effect. Standard errors
are clustered at the state level.
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We explore whether our main results are explained by proximity in space. In

Table 10 we repeat our main analysis excluding nearby counties from the network.

We find that even inflation expectations from distant locations are an important

determinant of an individual’s inflation expectations. In particular, the main co-

efficient increases compared to the benchmark estimate. In Online Appendix C.3

we show that incorporating time fixed effects can introduce a bias that attenuates

the coefficient, particularly in scenarios characterized by a homogeneous network

structure. Hence, the increase in the main coefficient is consistent with the fact

that when we exclude inflation expectations in nearby counties, we induce greater

heterogeneity in the network, which reduces this attenuation bias.22

Table 10: Effect of Removing Close Counties on Inflation Expectations

(1) (2) (3) (4) (5) (6)
Expectations of Others 0.282*** 0.352** 0.280*** 0.281** 0.281*** 0.291**

(0.089) (0.149) (0.090) (0.130) (0.089) (0.130)
County Expectations 0.590*** 0.554*** 0.591*** 0.556*** 0.591*** 0.556***

(0.065) (0.047) (0.066) (0.048) (0.065) (0.048)
Distance >200m >200m >250m >250m >300m >300m
County FE Yes Yes Yes Yes Yes Yes
Time FE No Yes No Yes No Yes
Observations 1,926,282 1,926,282 1,926,282 1,926,282 1,926,282 1,926,282
R-squared 0.017 0.017 0.017 0.017 0.017 0.017

Note: The table shows the results of regression (3), where the dependent πe
i,c,t is the inflation expectations of individual i who answers

from county c at time t. Observations are weighted by the number of responses in a county in each period. We build a network excluding
counties that are less than a certain amount of miles from the individual’s county. Standard errors are clustered at the county level.

22The result is tied to the following intuition: Inclusion of a time fixed effect is equivalent to
filtering out average inflation expectations of respondents, which is similar to estimating a network
coefficient, only with different weights. By removing nearby counties from the data underlying the
estimation of the second coefficient, we are making the two fixed effects dissimilar. It then turns
out that this change can reduce the attenuation bias in the coefficient on expectations in the social
network.
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Table 11: County Demographic Controls

Sh Foreign PC Income Sh Black Sh Hisp Sh White NH Pov Rate Biden Sh
Exp of Others 0.337*** 0.326*** 0.234*** 0.288*** 0.097*** 0.243*** 0.331***

(0.032) (0.062) (0.055) (0.064) (0.024) (0.032) (0.427)
County Exp 0.555*** 0.551*** 0.583*** 0.564*** 0.565*** 0.564*** 0.555***

(0.036) (0.022) (0.048) (0.048) (0.054) (0.038) (0.285)
County FE Yes Yes Yes Yes Yes Yes Yes
Time FE Yes Yes Yes Yes Yes Yes Yes
Time-Dem FE Yes Yes Yes Yes Yes Yes Yes
Observations 1,926,282 1,926,282 1,926,282 1,926,282 1,926,282 1,926,276 1,920,803
R-squared 0.017 0.017 0.017 0.017 0.017 0.017 0.017

Note: The table shows the results of a version of regression (3), where the dependent πe
i,c,t is the inflation expectations of individual i

who answers from county c at time t. The regression includes time fixed effect interacted by demographic characteristics at the county
level. “Sr Foreign” is the share of foreign born individuals at the county level. “PC Income” is the income per capita. “Sh Black”
is the share of black population. “Sh Hisp” is the share of Hispanic population. “Sh White NH” is the share of white non-Hispanic
population. “Pov Rate” is the poverty rate. All these variables coming from the latest census information at the county level. “Biden
Sh” is the share of votes that Joseph Biden got in the county in the 2020 presidential election. Observations are weighted by the
number of responses in a county in each period. Standard errors are clustered at the county level.

Table 12: Price Network and Social Network

(1) (2) (3) (4) (5) (6) (7)
Price Network 0.231*** 0.046 0.351*** -0.036 -0.043 -0.094* -0.091*

(0.061) (0.084) (0.076) (0.056) (0.055) (0.057) (0.053)
Expectations of Others 0.050** 0.070*** 0.063**

(0.023) (0.025) (0.026)
County Expectations 0.712*** 0.687*** 0.546*** 0.497*** 0.497*** 0.476*** 0.434***

(0.051) (0.038) (0.053) (0.032) (0.032) (0.026) (0.014)
Time FE No Yes No Yes Yes Yes Yes
County FE No No Yes Yes Yes Yes Yes
Demographic FE No No No No No Yes Yes
Demographic-Time FE No No No No No No Yes
Observations 1,277,247 1,277,247 1,277,247 1,277,247 1,277,247 1,276,612 1,276,612
R-squared 0.012 0.012 0.012 0.013 0.013 0.029 0.031

Note: The table shows the results of a version of regression (3), where the dependent πe
i,c,t is the inflation expectations of individual i

who answers from county c at time t. Price network uses a network from Garcia-Lembergman (2020). Expectations of Others uses the
SCI network. Demographics fixed effects are the income, age, politics and gender definitions used in the paper and are at the individual
level. Observation are weighted by the number of responses in a county in each period. Standard errors are clustered at the county level.
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Table 13: Network Effect by Political Affiliation
(1) (2) (3) (4) (5) (6)

Network − Politics 0.273*** 0.225*** 0.259*** 0.166*** 0.169*** 0.264***
(0.022) (0.041) (0.040) (0.031) (0.034) (0.051)

In f − County 0.646*** 0.631*** 0.575*** 0.558*** 0.514*** 0.333***
(0.032) (0.033) (0.031) (0.030) (0.023) (0.037)

County FE No No Yes Yes Yes Yes
Time FE No Yes No Yes Yes Yes
State-Time FE No No No No Yes No
County-Time FE No No No No No Yes
Observations 1,896,092 1,896,092 1,896,092 1,896,092 1,896,092 1,896,092
R-squared 0.022 0.023 0.023 0.023 0.024 0.025

Note: The table shows the results of regression (4), where the dependent variable πe
i,d,c,t is the inflation expectations

of individual i, of political affiliation d, who answers from county c at time t.. The network is defined as all the
answers that are for individuals from the same political affiliation in other counties. In f − County is the average of
responses from respondents with the same political affiliation in her/his own county. Respondents choose between
Democrat, Republican, or Independent. Observations are weighted by the number of responses in a county in each
period. Standard errors are clustered at the county level.

Table 14: Network Effect by Income
(1) (2) (3) (4) (5) (6)

Network − Income 0.214*** 0.173*** 0.205*** 0.147*** 0.164*** 0.258***
(0.035) (0.030) (0.052) (0.036) (0.038) (0.069)

In f − Income 0.676*** 0.662*** 0.613*** 0.596*** 0.553*** 0.375***
(0.035) (0.034) (0.036) (0.032) (0.026) (0.049)

County FE No No Yes Yes Yes Yes
Time FE No Yes No Yes Yes Yes
State-Time FE No No No No Yes No
County-Time FE No No No No No Yes
Observations 1,899,700 1,899,700 1,899,700 1,899,700 1,899,700 1,899,700
R-squared 0.024 0.024 0.025 0.025 0.025 0.027

Note: The table shows the results of regression (4). The dependent variable πe
i,d,c,t is the inflation expectations of

individual i, of income d, who answers from county c at time t. The network is built from answers from individuals
with the same income. In f − Income is the average of responses from respondents in the same income bracket
in her/his own county. Respondents choose between less than 50k, 50-100k, and more than 100k annual income.
Observations are weighted by the number of responses in a county in each period. Standard errors are clustered at
the county level.
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Table 15: Network Effect by Age
(1) (2) (3) (4) (5) (6)

Network − Age 0.291*** 0.302*** 0.292*** 0.306*** 0.325*** 0.429***
(0.020) (0.026) (0.032) (0.030) (0.037) (0.041)

In f − Age 0.643*** 0.633*** 0.593*** 0.585*** 0.557*** 0.447***
(0.038) (0.031) (0.037) (0.030) (0.023) (0.035)

County FE No No Yes Yes Yes Yes
Time FE No Yes No Yes Yes Yes
State-Time FE No No No No Yes No
County-Time FE No No No No No Yes
Observations 1,883,123 1,883,123 1,883,123 1,883,123 1,883,123 1,883,123
R-squared 0.032 0.032 0.032 0.032 0.033 0.035

Note: The table shows the results of regression (4). The dependent variable πe
i,d,c,t is the inflation expectations

of individual i, of age d from county c at time t. The network is built with answers from individuals of the same
age group. In f − Age is the average of responses from respondents with the same age group in her own county.
Respondents choose between 18-34, 35-44, 45-64, and more than 65 years old. Observations are weighted by the
number of responses in a county in each period. Standard errors are clustered at the county level.
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Table 16: Similarity Effects by Other Demographic Characteristics

(1) (2) (3) (4) (5) (6)
Network-Age 0.316*** 0.363*** 0.465***

(0.035) (0.031) (0.039)
County-Age 0.585*** 0.514*** 0.413***

(0.032) (0.026) (0.032)
Network-Income 0.149*** 0.138** 0.242***

(0.035) (0.054) (0.075)
County-Income 0.608*** 0.506*** 0.325***

(0.020) (0.018) (0.029)
Network-Politics 0.179*** 0.141*** 0.235***

(0.036) (0.035) (0.045)
County-Politics 0.551*** 0.451*** 0.281***

(0.014) (0.015) (0.020)
Network-Gender 0.377*** 0.366*** 0.739***

(0.041) (0.052) (0.091)
County-Gender 0.610*** 0.497*** 0.151***

(0.019) (0.018) (0.036)
Network -0.158*** -0.077** -0.079*** -0.250*** -0.702***

(0.020) (0.038) (0.024) (0.038) (0.041)
County -0.009 -0.036 -0.021 -0.043 -1.377***

(0.036) (0.039) (0.039) (0.036) (0.030)
County FE Yes Yes Yes Yes Yes Yes
Time FE Yes Yes Yes Yes Yes Yes
County-Time FE No No No No No Yes
Observations 1,883,123 1,899,700 1,896,092 1,910,679 1,850,340 1,848,409
R-squared 0.031 0.025 0.023 0.027 0.050 0.045

Note: The table shows the results of regression (4), where the dependent variable πe
i,d,c,t denotes the inflation

expectations of individual i of gender d in county c at time t. Network is defined as the average of inflation
expectations of individuals from the same demographic group in other counties. County denotes the average in
the own county. Network and county combinations of demographic categories denote the averages conditional
on other individuals belonging to the same demographic categories. Observations are weighted by the number
of responses in a county in each period. Standard errors are clustered at the county level.
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Table 17: Similarity and Dissimilarity Effect by Gender

(1) (2) (3) (4) (5) (6)
Similarity-Network 0.303*** 0.285*** 0.325*** 0.211*** 0.512*** 0.460***

(0.036) (0.021) (0.054) (0.022) (0.108) (0.088)
Dissimilarity-Network -0.086*** -0.106** -0.004 -0.153*** 0.052 -0.002

(0.026) (0.040) (0.031) (0.031) (0.154) (0.136)
Similarity-County 0.675*** 0.662*** 0.602*** 0.578*** 0.558*** 0.560***

(0.035) (0.030) (0.040) (0.033) (0.033) (0.035)
Dissimilarity-County 0.037*** 0.029** -0.032*** -0.051*** -0.038*** -0.036***

(0.012) (0.013) (0.011) (0.008) (0.006) (0.006)
County FE No No Yes Yes Yes Yes
Time FE No Yes No Yes Yes Yes
Counties All All All All >200m >250m
Observations 1,858,010 1,858,010 1,858,010 1,858,010 1,858,010 1,858,010
R-squared 0.026 0.026 0.026 0.026 0.027 0.027

Note: The table shows the results of regression (4). The dependent variable πe
i,d,c,t is the inflation expectations of

individual i of gender d in county c at time t. Similarity − Network is the average inflation expectations of individuals of
the same gender in other counties. Dissimilarity − Network for the opposite gender. Similarity − County is the average
inflation expectations of respondents of the same gender in the same county. Dissimilarity − County for the opposite
gender. Columns (5) and (6) show regressions where the network is built removing counties closer than 200 miles and
250 miles, respectively. Observations are weighted by the number of responses in a county in each period. Standard
errors are clustered at the county level.

Table 18: Similarity Effects by Other Demographic Char-
acteristics

Age Income Politics Gender
(1) (2) (3) (4)

Network-Dem 0.006 0.025** 0.031* 0.030**
(0.011) (0.013) (0.017) (0.014)

Own County Dem 0.574*** 0.559*** 0.566*** 0.549***
(0.018) (0.021) (0.025) (0.025)

County FE Yes Yes Yes Yes
Time FE Yes Yes Yes Yes
Dem-Time FE Yes Yes Yes Yes
Observations 1,883,123 1,899,700 1,330,360 1,910,679
R-squared 0.039 0.027 0.024 0.029

Note: The table shows the results of regression (4). The dependent variable πe
i,d,c,t is

inflation expectations of individual i of gender d in county c at time t. Network − Dem
is the average inflation expectations of individuals with the same demographic group
in other counties. OwnCountyDem is the average in the own county. Observations
are weighted by the minimum number of responses by gender in a county in each
period. Standard errors are clustered at the county level.
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Table 19: Exogenous Variation and Network Effect

(1) (2) (3) (4) (5)
∑k ̸=c ωc,kGas_e f f ectc,t 1.771***

(1.248)
∑k ̸=c ωc,kGas_e f f ectc,d,t 2.196* 0.727

(1.126) (0.948)
∑k ̸=c ωc,kπe

d,k,t 0.972*** 1.173***
(0.126) (0.122)

Gas_e f f ectc,t 2.091* 2.107* 0.220 3.192*** 3.145***
(1.187) (1.203) (1.106) (0.396) (0.387)

Sample All Men Female All All
Time FE No Yes Yes Yes Yes
County FE Yes No Yes Yes Yes
Regression OLS OLS OLS OLS IV
F-Test - - - - 179.8
Observations 1,239,680 606,305 632,750 1,239,055 1,239,055
R-squared 0.014 0.014 0.014 0.020 0.006

Note: This table shows results from two specifications. First, πe
i,c,t = αc + θt + αsGas_e f f ectc,t +

βs ∑k ̸=c ωc,kGas_e f f ectd,k,t + εi,d,c,t, and second, πe
i,d,c,t = αc + θt + αsGas_e f f ectc,t + βs ∑k ̸=c ωc,kπe

d,k,t +

εi,t, where πe
i,d,c,t is the inflation expectations of individual i, of gender d, in county c, at time t;

Gas_e f f ectc,t is described in the text; πe
d,k,t is gender d inflation expectations in county k at time t;

Gas_e f f ectd,k,t is described in the text. αc and γt are county and time fixed effects. Column (6) use as
instrument ∑k ̸=c ωc,kGas_e f f ectd,k,t for ∑k ̸=c ωc,kπe

d,k,t. Observations are weighted by the number of
responses in a county in each period. Standard errors are clustered at the county level
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Table 20: Demographic Differences

(1) (2)
Pgas,t × Commc(i) 3.958***

(0.475)
Pgas,t × Commc(i) × I(Fem = 1) -3.124***

(0.572)
∑k ̸=c ωc,kGas_e f f ectc,d,t 0.532***

(0.023)(
∑k ̸=c ωc,kGas_e f f ectc,d,t

)
× I(Fem = 1) -0.167***

(0.023)
πe
−i,d,c,t 1.980***

(0.200)
πe
−i,d,c,t × I(Fem = 1) -1.398***

(0.319)
Observations 1,239,055 1,910,679
R-squared 0.024 0.028

Note: Column (1) shows results for Columns (5) and (6) of Table 3, in a single
regression. We interact the coefficients with I(Fem = 1) that takes a value of 1 if the
respondent is female and zero otherwise. Column (2) shows results for Columns
(4) and (5) of Table 4, in a single regression, with the interaction with I(Fem = 1).
Both regressions include time-fixed effects, and county-fixed effects, interacted
with I(Fem = 1). We weigh by the number of respondents in a county-time.
Standard errors are clustered at the county level.

G Generalizing the Social Network Effect
Arguably, not only inflation expectations can be socially determined. When we

allow for a generalization to all variables, also on the firm side, an additional term

arises. This term shows up as an additional distortion in the equilibrium condi-

tions for home consumption, the expressions for home and foreign inflation rates

change, but not the Backus-Smith condition. The additional terms appear as an

additional distortion in the consumption Euler as follows:

ĉHt = Et ĉH,t+1 −
1
γ
(R̂t − EtΠ̂H,t+1) +

1 − ρe

γ
êHt +

1 − ΓH

γ
Et [(ΓH + ΓF − 2)x̂t+1 + x̂t]︸ ︷︷ ︸

social network effect
(G.1)

while the dynamics of home and foreign inflation are additionally affected as fol-
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lows:

Π̂Ht = κ(α + γ)ĉHt + βEtΠ̂H,t+1 + κ(1 − ϕH)θx̂t + ûHt −
κα(1 − ϕH)

γ
(êHt − êFt)

+ κ(1 − ϕH)ψx̂t − β(1 − ΓH)Et(x̂t+1 − x̂t)︸ ︷︷ ︸
social network effect

(G.2)

Π̂Ft = κ(α + γ)ĉFt + βEtΠ̂F,t+1 − κ(1 − ϕF)θx̂t + ûFt +
κα(1 − ϕF)

γ
(êHt − êFt)

− (κ(1 − ϕF)ψx̂t − β(1 − ΓF)Et(x̂t+1 − x̂t))︸ ︷︷ ︸
social network effect

(G.3)

Proposition 7 (Generalized Network Effect). Expectations in the social network dis-

tort aggregate dynamics if and only if there is a local shock and at least one of the following

two conditions holds:

n(1 − ΓH) ̸= (1 − n)(1 − ΓF)

(1 − ΓH)(1 − ΓF − ΓH) ̸= 0

Proof. We aggregate regional dynamics to get aggregate inflation and consump-

tion/output dynamics:

Π̂t = κ(α+γ)ĉt + βEtΠ̂t+1 −EtΠ̂t+1)− β(n(1 − ΓH)− (1 − n)(1 − ΓF)Et(x̂t+1 − x̂t)︸ ︷︷ ︸
Social network effect

+ût

(G.4)

ĉt = Et ĉt+1 −
1
γ
(R̂t − EtΠ̂t+1) + êt

− 1
γ
[(n(1 − ΓH)− (1 − n)(1 − ΓF))Et(x̂t+1 − x̂t) + (1 − ΓH)(1 − ΓH − ΓF)Et x̂t+1]︸ ︷︷ ︸

Social network effect
(G.5)

Corollary 3 (Generalized Network Effect in a Symmetric Economy). Expectations

in the social network distort the aggregate dynamics in a symmetric economy with n = 0.5

and ΓH = ΓF = Γ ̸= 1 if and only if there is a local shock and Γ ̸= 0.5.

76


	Introduction
	Empirical Analysis
	Data
	Challenges and Identification Strategy

	Results
	Relation with Inflation Expectations of Others
	Relation with Inflation Expectations of Similar Others
	Transmission of Exogenous Shocks through the Network

	Macroeconomic Implications
	Model Setup
	Socially Determined Expectations
	Welfare Implications

	Conclusion
	Appendix: Proofs
	Backus-Smith condition derivation
	Proof of Proposition 2
	Proof of Proposition 4

	Theoretical Framework for the Expectations of Others
	Baseline: No Social Interaction
	Social Interaction
	Testable Implications for Inflation Expectations
	Proofs
	Proof of Proposition 5
	Proof of Proposition 6


	The Reflection Problem
	Baseline
	Time Fixed Effects
	Time Fixed Effect with Constant Weights and Bias
	No Time Fixed Effect
	With Time Fixed Effect


	Additional Figures
	Social Connectedness Weights: Examples
	Other Additional Figures

	Additional Evidence: County-Level Evidence
	Other Additional Tables
	Generalizing the Social Network Effect

