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1 Introduction

Inflation expectations have been shown to matter for economic decision-making (see, for in-

stance, Coibion et al. (2019a), Coibion et al. (2019b), and Hajdini et al. (2022b)). Because there are

many ways in which these expectations depart from rationality, a large literature aims to under-

stand – primarily in the domain of consumer expectations – the expectations formation processes

and their implications for macro dynamics.1 Specifically, the behavioral literature has shown that

consumers may use availability heuristics to form expectations (Tversky and Kahneman (1973)),

implying that they find events that are more salient or easier to recall to be more likely.2 Recent

work by da Silveira and Woodford (2019) and Bordalo et al. (2023) has focused on understanding

the role of memory in belief formation.3

However, while these modeling frameworks of individual belief formation have been inspired

by insights from psychology, they largely remain silent about a central insight from social psychol-

ogy that goes back to the original work of Festinger (1954): The formation of beliefs takes place

in a social context, when we interact with others. This paper aims to contribute to the current

literature by showing – through the lens of inflation expectations – that social networks can play

a complementary, important role in the process of belief formation. In his original work, Festinger

(1954) evaluated the hypothesis in various experimental social contexts that “people evaluate their

opinions and abilities by comparison respectively with the opinions and abilities of others.” We

formalize this point theoretically and show that there is a role for the opinions and abilities of

others. He also claimed that “the tendency to compare oneself with some other specific person de-

creases as the difference between his opinion or ability and one’s own increases.” Our framework

likewise formalizes this role of social similarity for the context of expectations.

We then provide strong empirical evidence for the relevance of social comparison in the pro-

cess of belief formation. We do so on the basis of a novel dataset that merges a uniquely dense

survey of inflation expectations for consumers across counties in the US with information on a

county’s social network connections with other counties (see, e.g., Bailey et al. (2018a)). Exploit-

1See, for instance, Coibion and Gorodnichenko (2015a), Gabaix (2020), Kohlhas and Walther (2021), L’Huillier et al.
(2021), among many others.

2See, for example, Carroll (2003).
3Implications of memory and its limits on economic behavior have also been studied in Dow (1991), Mullainathan

(2002), and Gennaioli and Shleifer (2010), among others.
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ing cross-sectional and time variation while taking into account local inflation expectations and

time fixed effects, a clear finding emerges: The inflation expectations of others matter when indi-

viduals form their own inflation expectations. An appropriate instrumentation strategy ensures

that we can interpret this finding to be causal as well as immune to the endogeneity concerns

embodied by the reflection problem (Manski (1993)). Moreover, using data on demographic char-

acteristics, we find that inflation expectations of an individual’s social network turn out to matter

more if the network contains people of the same demographic group, in short: if social similarity

is high. These results indicate that Festinger (1954)’s original hypotheses matter in the context of

belief formation.

Our theoretical analysis develops the idea of social comparison in Festinger (1954) for the for-

mation of economic expectations by embedding it into the framework of memory and similarity

of recall in Bordalo et al. (2023). While we implement the idea in the framework of Bordalo et al.

(2023), it can broadly be implemented in any other behavioral framework. In the work of Bor-

dalo et al. (2023), individuals recall hypothesis k by drawing experiences stored in their memory

database with some recall probability. A similarity function that measures the intensity of resem-

blance between an experience and hypothesis k is at the core of the recall probability of hypothesis

k.4 Individuals randomly draw experiences from their memory dataset, and the number of times

that the individual successfully recalls events aligned with hypothesis k is governed by a binomial

distribution with probability equal to the recall probability of k. The number of successful draws

then determines this individual’s subjective likelihood that hypothesis k occurs.

We extend this framework of Bordalo et al. (2023) and allow for social comparison to affect

probability assessments by explicitly extending the memory database to include the experiences

retrievable from one’s social network. When disciplining recall probabilities, we assume that in-

dividuals divide their attention between their own experiences and experiences shared through

the social network. Individuals further divide attention allocated to the network among the ex-

periences shared by the various members in the network. Finally, we allow for an individual’s

similarity function between hypothesis k and experiences shared by a member of her social net-

work to depend on the number of their common demographic characteristics.

4The similarity function is assumed to be fairly generic. As a result, the implications of our framework would
continue to apply if the similarity function depends on variables that speak to other behavioral biases of expectations
formation processes.
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The model analysis yields three predictions for the formation of inflation expectations in the

presence of social networks. First, social networks matter for expectations if individuals pay at-

tention to experiences shared by members of their social network. In particular, social interaction

generates amplification if shared experiences are relatively more relevant than irrelevant for a

high-inflation scenario. Second, in inflationary environments, networks of common demograph-

ics amplify expectations if they increase similarity between shared experiences and the scenario of

high inflation. Third, idiosyncratic county-level inflationary disturbances can destabilize inflation

expectations if aggregate attention to experiences retrieved from the memory database of the social

network exceeds aggregate attention to experiences retrieved from the personal memory database.

These predictions find strong empirical support from a novel dataset. This dataset derives

from the merger of a uniquely dense survey of inflation expectations for nearly 2 million con-

sumers across counties in the US with data on the social networks across counties based on Face-

book friendships between counties. Bailey et al. (2018a, 2019) in work on house prices describe in

detail the properties of the Facebook data, demonstrating its ability to capture the impact of social

networks on economic decision-making in the housing market and the link to housing market

beliefs. In the domain of inflation expectations, making a connection between beliefs and social

networks has so far not been possible because conventional datasets of inflation expectations are

not dense enough for such an analysis. The merger of the Facebook data with our inflation ex-

pectations data overcomes this challenge, allowing us to observe the inflation expectations of an

individual in a county, the average probability that this individual is connected to an individual

in another county in the US, and the inflation expectations of individuals in other counties. More-

over, we have inflation expectations at a monthly frequency, allowing us to measure the influence

of others at a high frequency.

We use these data to, first, construct a measure of an individual’s exposure to inflation ex-

pectations in other counties. We assume that the average social connection of an individual in a

given county captures this exposure, a measure of the network weight that has been shown to

be relevant by Bailey et al. (2020). Given these weights, we compute network-weighted inflation

expectations of expectations based on all respondents in the other counties, as well as for sets of

individuals with similar demographics only (based on gender, age, income, and political party).

Second, we compute average inflation expectations within a given county, excluding those of the
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individual under consideration in the given county.

Strong evidence – in the spirit of Festinger (1954) – emerges from several regression specifica-

tions that the experiences of individuals in geographically distant, but socially connected coun-

ties, matter for the formation of inflation expectations. First, we find a positive and statistically

significant effect of the county-specific weighted average inflation expectations of the connected

counties. This effect remains constant after controlling for the inflation expectations of others in

the county, a time fixed effect and after excluding the closest values. While the coefficient found

might be biased, we show that these results are evidence that the social interaction matters for the

expectation formation process. We then work to get an unbiased coefficient.

Second, we explore the role of similar experiences. We split the network by common demo-

graphic characteristics and find that consumers are more influenced by people that share the same

characteristics, such as gender, age, income, or political affiliation. This exercise allows us to con-

trol for county-time fixed effects, controlling for any common county-specific shock coming from

inside or from other non-social networks.

While these results take into account unobserved factors through detailed fixed effects, vari-

ation may still be endogenous. For example, expectations might be affected by common shocks

or other concerns such as the reflection problem (Manski (1993)), which, as we prove, remains

present even after accounting for time fixed effects.5 Therefore, we develop an instrumental vari-

able approach to obtain an unbiased estimate. The idea is simple: Gas prices are relevant for the

formation of inflation expectations (Coibion and Gorodnichenko (2015b)); the relevance of gas

prices varies across cities, depending on the importance of gas use. We can thus use a shift-share

approach exploiting different commuting shares by car across counties (and hence gas use) to

obtain county-time specific exogenous shocks to gas prices after filtering out any common time

variation from the shift-share measures. In addition, we explore difference by gender. We confirm

D’Acunto et al. (2021a) results, which find that males’ inflation expectations are more influenced

5We prove that the reflection problem induces a bias in the estimated effects of social networks on inflation
expectations only if the network truly matters for expectations. By contrast, if the social network is in fact irrelevant
for inflation expectations, then the reflection problem disappears. As a result, it must be that any non-zero empirical
correlation between individual expectations and the expectations of the network indicates the relevance of social
networks for inflation expectations. Our reduced-form OLS results show the presence of a significantly positive
correlation between individual inflation expectations and the expectations of others, implying that the network matters
for expectations formation. While an OLS coefficient that is different from zero is sufficient to show that the network
matters, we rely on an IV approach to quantify the importance of the network for inflation expectations.
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by gas prices, conditional on the use of gas. Then, by showing that a network-weighted measure of

these exogenous, county-demographic-specific time-varying shocks has a strong and statistically

significant effect on individual inflation expectations, we can give a causal interpretation to the

importance of social networks for the formation of inflation expectations. Going one step further,

we can also establish causality in the relationship between the beliefs embedded in an individual’s

social network and the formation of individual inflation expectations. To do so, we use this mea-

sure of network-weighted gas use as a instrumental variable in a regression of individual inflation

expectations on network-weighted inflation expectations. The coefficient on the network’s expec-

tations is higher than in the case of the above OLS specification and statistically different from zero.

Clearly, social interaction matters for the formation of expectations. But what are the stabil-

ity properties of social networks implied by these estimates, following a one-time idiosyncratic

county-level shock to inflation expectations?6 For example, if individuals pay too much attention

to the experiences in their network instead of their own experiences, the social network might

render beliefs unstable. We derive conditions for instability that show that our empirical findings

still indicate stability. Importantly, this conclusion holds for the results based on the instrumen-

tal variables approach, which yields an even higher coefficient estimate. Variation coming from

salient prices, which individuals discuss more, can exacerbate inflation expectations significantly.

These findings indicate that policymakers might want to identify those informational shocks that

transmit strongly through the network to control unstable movements in inflation expectations.

At the same time, these results – by virtue of the variation contained in the instrument – pro-

vide an insight into the nature of experiences communicated through the social network in the

context of inflation expectations. The fact that price experiences in other counties for a salient

good, gasoline, when transmitted through the social network generate an amplifying effect on

inflation expectations suggests that, as in Bordalo et al. (2023), the social memory database that

is activated must comprise experiences that are overall salient and relevant to inflation expecta-

tions. This interpretation aligns with the positive coefficients from the OLS estimation and the

higher coefficient from the instrumental variables estimations. Ideally, one would like to analyze

the precise experiences communicated through the social network, for example, by looking at the

6The implications of idiosyncratic shocks have been studied in other contexts; for instance, Gabaix (2011) has
shown that idiosyncratic firm-level shocks can explain an important part of aggregate fluctuations.
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messages exchanged. However, this task is beyond the scope of this paper and its data.

The findings from our analysis are related to several literatures in economics. One strand of

the literature comprises recent work in macroeconomics focused on the transmission of shocks

through networks, such as input-output linkages (see, for example, Baqaee and Farhi (2018),

Rubbo (2020), Pasten et al. (2020)). In line with the main question of this macroeconomic liter-

ature, our findings imply that micro-economic shocks can transmit through the social network,

via inflation expectations, and have aggregate implications. Extending the network literature to

the context of inflation expectations raises many important and interesting questions related to,

for example, the existence of multiple equilibria, the role of super-nodes, and the transmission of

shocks from different regions and of different sizes (Gabaix (2011)). Further work may lead to

additional insights with relevant implications for policymakers that aim to keep inflation expec-

tations anchored.

Our analysis is also related to a large behavioral literature in which many studies have shown

how individual characteristics and experiences affect the process of expectations formation (for ex-

ample, Malmendier and Nagel (2016), D’Acunto et al. (2021b), Kuchler and Zafar (2019), Hajdini

et al. (2022a)). The findings in these papers are related to a theoretical literature that argues that

individuals use heuristics in the formation of beliefs. This literature goes back most prominently

to Kahneman and Tversky (1972). It has recently been refined using the diagnostic expectation

model (Bordalo et al. (2018), Bordalo et al. (2019), and L’Huillier et al. (2021)), as well as through

the idea of memory in the expectations formation process (da Silveira and Woodford (2019), Bor-

dalo et al. (2023)). Relative to this literature, our paper emphasizes theoretically and empirically

the role of social interaction for further disciplining the formation of expectations.

Our analysis is also related to a growing literature that empirically studies the effects of social

interactions on economic decision-making. For example, in the context of housing, Bailey et al.

(2018b) find that individuals whose geographically distant friends experienced larger house price

increases are more likely to transition from renting to owning. Using a survey for individuals in

Los Angeles, Bailey et al. (2019) also show that the social network can affect house price expecta-

tions. Likewise emphasizing the role of social networks, Burnside et al. (2016) use “social dynam-

ics” to explain how there can be booms and busts in the housing market. Housing is an important

but also atypical, durable good that is purchased at most a few times during one’s lifetime, and by
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contrast, our analysis focuses on the entire consumption basket in the economy. Its broader scope

makes expectations about the future price of consumption a central macroeconomic variable not

least in the monetary policy context, especially in times of high inflation. The formal framework

of inflation expectations formation in the context of social networks that we provide and validate

may moreover help policymakers in understanding and exploiting these mechanisms for the ben-

efit of macroeconomic stabilization goals and the optimal design of central bank communication.

The remainder of the paper is organized as follows. Section 2 presents a model of inflation ex-

pectations and social networks. Section 3 presents the data. Section 4 presents the main empirical

results. Section 5 applies an instrumental variable strategy to the empirical analysis and discusses

the stability of inflation beliefs in the context of social networks. Finally, Section 6 concludes.

2 Theoretical Framework

This section extends the memory and recall model of Bordalo et al. (2022) and Bordalo et al.

(2023) to incorporate the feature of social interaction. It starts off by describing a baseline setting in

which individuals in the economy do not socially interact with one another (similar to Bordalo et

al. (2022) and Bordalo et al. (2023)). We then allow for individuals to socially interact and exchange

experiences with one another and derive a number of testable implications.

2.1 Baseline: No Social Interaction

Consider some individual j, who has stored a set of personal experiences in her memory database

Ej of size |Ej|. For simplicity, we split the set of experiences of j into three mutually exclusive

subsets containing high inflation experiences, EH
j , low inflation experiences, EL

j , and experiences

that are irrelevant to high or low inflation experiences, EO
j . We would like to assess the probabil-

ity that individual j recalls experiences that are similar to a particular hypothesis k ∈ K = {H, L},

where H denotes the hypothesis of high inflation and L that of low inflation. To assess the prob-

ability of recall, we define a similarity function between two events uj ∈ Ej and vj ∈ Ej, that is,

Sj(uj,vj) : Ej × Ej →
[

0 S̄j

]
, that quantifies the similarity between individual j’s experience uj

and vj. The similarity between any two experiences uj and vj increases in the number of shared

features between the two experiences, and the highest value of similarity, S̄j, is achieved when

uj = vj. We purposefully abstract from providing a particular functional form for Sj to warrant
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generality of our results.7

The similarity between an experience ej and a subset of experiences, A ⊂ Ej, is given by

Sj(ej, A) = ∑
uj∈A

Sj(ej,uj)

|A| (1)

and the probability r(ej,k) that individual j recalls experience ej when presented with hypothesis

k is given by the similarity between ej and event k as a share of the total similarity between all the

experiences in the memory database and hypothesis k:

r(ej,k) =
Sj(ej,k)

∑e∈Ej
S(u,k)

(2)

Next, the probability that individual j recalls experiences similar to hypothesis k ∈ K is given

by the total similarity between experiences related to k and hypothesis k as a share of the total

similarity between all the experiences in the memory database and hypothesis k, that is,

rj(k) =
∑e∈Ek

j
Sj(e,k)

∑e∈EH
j

Sj(e,k) + ∑e∈EL
j

Sj(e,k) + ∑e∈EO
j

Sj(e,k)
(3)

It is important to note that an enlargement of experiences related to k leads to a higher recall

probability of hypothesis k, but experiences EO
j unrelated to k imply interference for rj(k).

2.2 Social Interaction

Now suppose that individual j socially interacts with other individuals i ∈ {1,2, ..., j− 1, j+ 1, ..., Nj +

1}, such that every individual i shares experiences with j. Nj denotes the total number of individ-

uals who j interact with. We denote the set of experiences that individual i shares with individual

j by Ei→j (without putting any restrictions on the flow of information in the reverse direction).

Experiences shared by individual i are categorized into three mutually exclusive subsets: high

inflation experiences, EH
i→j, low inflation experiences, EL

i→j, and experiences irrelevant to high or

low inflation, EO
i→j.

We assume that, when interacting with others, individual j’s assessment of similarity between

k-related experiences shared by any individual i and any hypothesis k is conditional on the share
7Relatedly, the functional form of similarity can very well be unique to individual j, and depend on her behavioral

characteristics, cognitive abilities, etc.
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of common demographic characteristics between j and i, θji. Therefore, the similarity between any

experience e ∈ Ei→j and hypothesis k is given by Sj(e,k | θji). This assumption allows for a hetero-

geneous function to judge the similarity between a given hypothesis and experiences shared by

others. Using common demographic characteristics is a natural way to do so, given the growing

empirical evidence that shows that individuals with common demographic characteristics, such

as gender and age group, share similar experiences in terms of inflation (see, for instance, Mal-

mendier and Nagel (2016), D’Acunto et al. (2021b), Hajdini et al. (2022a), and Pedemonte et al.

(2023), among others).

When computing recall probabilities, we assume that individual j assigns weight γj ∈ [0,1]

to her own experiences and weight (1 − γj) to everyone else’s experiences. We further assume

that she assigns weight ω(θji) ∈ [0,1] to experiences shared by individual i that is increasing

on the share of common demographic factors between individual j and i, and that is such that

∑i ω(θji) = 1.

We let r̂j(k) denote individual j’s probability of recalling experiences linked to hypothesis

k ∈ {H, L} when she socially interacts with others. Such recall probability is given by:

r̂j(k) =
γj ∑e∈Ek

j
Sj(e,k) + (1 − γj)∑i ω(θji)∑e∈Ek

i→j
Sj(e,k | θji)

γj ∑e∈Ej
Sj(e,k) + (1 − γj)∑i ω(θji)∑e∈Ei→j

Sj(e,k | θji)
(4)

where ∑e∈Ej
Sj(e,k) =∑e∈EH

j
Sj(e,k)+∑e∈EL

j
Sj(e,k)+∑e∈EO

j
Sj(e,k) and ∑e∈Ei→j

Sj(e,k | θji) =∑e∈EH
i→j

Sj(e,k |

θji) + ∑e∈EL
i→j

Sj(e,k | θji) + ∑e∈EO
i→j

Sj(e,k | θji).

To understand whether social interaction amplifies or mitigates the recall probability of events

pertaining to hypothesis k, we derive conditions under which the recall probability under social

interaction, r̂j(k), is higher than the recall probability when social interaction is absent, rj(k). To

do this, we compute the difference between r̂j(k) and rj(k), that is,

r̂j(k)− rj(k) =
γj ∑e∈Ek

j
Sj(e,k) + (1 − γj)∑i ω(θji)∑e∈Ek

i→j
Sj(e,k | θji)

γj ∑u∈Ej
Sj(u,k) + (1 − γj)∑i ω(θji)∑u∈Ei→j

Sj(u,k | θji)
−

∑e∈Ek
j
Sj(e,k)

∑u∈Ej
Sj(u,k)

(5)

Proposition 1 provides conditions for social interaction to be relevant for recall probabilities
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and for social interaction to increase the recall probability of hypothesis k.

Proposition 1. The following statements are true:

1. If individual j allocates no attention to experiences shared by others, that is, γj = 1, then social inter-

action has no effect on recall probabilities.

2. Suppose that j assigns some weight to the experiences shared by others, that is, γj ∈ [0,1). Then,

social interaction increases the recall probability of hypothesis k if the total similarity of k-relevant

shared experiences relative to that of k-relevant own experiences exceeds the aggregate similarity of

k-irrelevant shared experiences relative to that of k-irrelevant own experiences:

∑i ω(θji)∑e∈Ek
i→j

Sj(e,k | θji)

∑e∈Ek
j
Sj(e,k)︸ ︷︷ ︸

relative relevance

>
∑i ω(θji)

(
∑u∈EK\k

i→j
Sj(u,k | θji) + ∑u∈EO

i→j
Sj(u,k | θji)

)
∑u∈EK\k

j
Sj(u,k) + ∑u∈Ek

j
Sj(u,k)︸ ︷︷ ︸

relative irrelevance

(6)

Proof. See Appendix E.1.

We call the term on the left-hand side of inequality (6) relative relevance and the term on the

right-hand side relative irrelevance. Then, in order for social interaction to amplify the recall prob-

ability of events related to hypothesis k, relative relevance has to exceed relative irrelevance. By

the same argument, social interaction interferes with the recall probability of events linked to hy-

pothesis k if relative irrelevance surpasses relative relevance.

Corollary 1 considers two extreme cases of Proposition 1: first, when any individual i shares

with individual j only experiences related to hypothesis k; and second, when any individual i

shares with individual j only experiences not related to hypothesis k.

Corollary 1. Consider the environment described in Proposition 1. Then, the following statements are true:

1. Suppose that any individual i shares with j experiences only related to hypothesis k. Then, social

interaction amplifies individual j’s recall probability of k.

2. Next, suppose that all individuals i share experiences not related to hypothesis k. Then, social interac-

tion interferes with individual j’s recall probability of k.

Proof. See Appendix E.2.
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Proposition 2 shows the implications that a change in attention to shared experiences has for

the probability of recall, in the presence of social interaction. In particular, if social interaction

gives rise to a higher recall probability, then an increase in the attention to others’ experiences will

amplify the recall probability even more.

Proposition 2. If the condition in (6) holds true, then an increase in attention to shared experiences, that

is, (1 − γj), intensifies the increase in the recall probability induced by social interaction.

Proof. See Appendix E.3.

Figure 1: Visual Summary of the Main Theoretical Results

0 1

0

1

Note: Summary of the direction of amplification for the recall probability related to hypothesis k, for any γj ∈ [0,1) and RR/RI. Arrows

in red indicate the direction of amplification for the recall probability as γj changes, for a given RR/RI; arrow in blue indicates the

direction of amplification for the recall probability as RR/RI changes, for a given γj. Dashed gray line: relative relevance = relative

irrelevance.

Figure 1 visually summarizes the main theoretical results of Propositions 1 and 2 and Corollary

1. Consider a social network where experiences are shared whose aggregate relative relevance ex-

ceeds relative irrelevance with hypothesis k. Then, paying more attention to the social network
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means social interaction will intensify the recall probability of such a hypothesis. However, when

aggregate relative relevance is lower than relative irrelevance with hypothesis k, then paying more

attention to the social network means social interaction will dampen the recall probability of such

a hypothesis.

Next, we are interested to understand the effects that similar and likewise demographic social

networks have for individual inflation expectations. Without loss of generality, we set θji ∈ {0,1}

and decompose the recall probability into three components as follows.

r̂j(k) =
Sk

j

Sj + Sθj.=1 + Sθj.=0︸ ︷︷ ︸
individual

+
Sk

θj.=1

Sj + Sθj.=1 + Sθj.=0︸ ︷︷ ︸
similar demographics network

+
Sk

θj.=0

Sj + Sθj.=1 + Sθj.=0︸ ︷︷ ︸
dissimilar demographics network

(7)

where Sk
j = γj ∑e∈Ek

j
Sj(e,k); Sj = γj ∑e∈Ej

Sj(e,k); Sk
θj.
= (1 − γj)∑i ω(θji)∑e∈Ek

i→j
Sj(e,k | θji); and

Sθj. = (1 − γj)∑i ω(θji)∑e∈Ei→j
Sj(e,k | θji).

Suppose that an additional member i with θji = 0 enters the network of j and contributes with

experiences belonging to Ek
i→j, EKk

i→j,and EO
i→j. If j pays no attention at all to experiences shared by

individuals with dissimilar demographics, then individual i has no marginal effect on r̂j(k). On

the other hand, if ω(θji) > 0, it is straightforward from (7) that this network extension interferes

with the individual and similar demographics network memory databases through an increase in

Sθj.=0. However, its effect on the dissimilar demographics network memory is ambiguous. On net,

an additional network member can increase the recall probability of hypothesis k if it contributes

with sufficiently more similarity than interference with hypothesis k.

Proposition 3 formalizes these results.

Proposition 3. Without loss of generality, let θji ∈ {0,1}. Then, given that ω is a strictly increasing

function in θji, the following two results apply:

1. If ωθji=0 = 0, then the effect of dissimilar demographic groups (social networks that satisfy θji = 0) on

the recall probability of j is 0.

2. If ωθji > 0 for any θji, then the effect of specific demographic groups on the recall probability is positive

(negative, respectively) if they add sufficiently more similarity than interference with hypothesis k.

Proof. See Appendix A.1.
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Importantly, Proposition 3 opens up the possibility of opposite sign effects of social networks

with common versus dissimilar demographics on the recall probability due to behavioral inter-

pretation of ... 8

2.3 Implications for Stability

Can shocks that are idiosyncratic to an individual destabilize recall? In the following, we assess

the role of social networks for the stability of recall probability of hypothesis k, given an idiosyn-

cratic shock to the recall probability of a member in the network. We focus on a social network of

two individuals, and assume, for simplicity, that the two individuals have a common similarity

function and that each individual shares all of their personal experiences with the other peer.

Let xj be the aggregate similarity of the personal experiences of individual j from set Ek
j with

hypothesis k, for any j ∈ {1,2}:

xj = ∑
e∈Ek

j

Sj(e,k) = ∑
e∈Ek

j→i

Si(e,k) (8)

where the second equality follows from the assumption that the two individuals share a common

similarity function. Let yj be the aggregate similarity of the personal experiences of individual j

from sets EK\k
j and EO

j with hypothesis k, for any j ∈ {1,2}:

yj = γjzj + (1 − γj)zi (9)

with

zj =

 ∑
e∈EK\k

j

Sj(e,k) + ∑
e∈EO

j

Sj(e,k)

 =

 ∑
e∈EK\k

j→i

Si(e,k) + ∑
e∈EO

j→i

Si(e,k)

 (10)

where the second equality follows from the assumption that the two individuals rely on the same

similarity function.9 Then, the recall probabilities of hypothesis k are given by

r̂1(k) =
γ1x1 + (1 − γ1)x2

γ1x1 + (1 − γ1)x2 + y1

8In Appendix , we
9We note that xj,yj ≥ 0 for any j ∈ {1,2} since by assumption, for any experience, Sj(e,k) ≥ 0.
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r̂2(k) =
γ2x2 + (1 − γ2)x1

γ2x2 + (1 − γ2)x1 + y2

Individual 2 has an effect on the recall probability of individual 1 through x2, and individ-

ual 1 has an effect on the recall probability of individual 2 through x1. Hence, for a given x2,

y1 and y2, we have r̂2(k) = f (r̂1(k) | x2,y1,y2). Similarly, for a given x1, y1, and y2 we have

r̂1(k) = g (r̂2(k) | x1,y1,y2). It is straightforward to show that, for any j ∈ {1,2} and i ̸= j,10

r̂j(k) = max
[

0,
ajr̂i(k) + bj

cjr̂i(k) + dj

]
(11)

where aj = (1 − γj)yi + (1 − γ1 − γ2)xj; bj = (γ1 + γ2 − 1)xj; cj = aj − γiyj; and dj = bj + γiyj. The

max operator captures the fact that the recall probabilities cannot be negative.

From here, it is trivial to see that, generally, there exist three equilibria: i) r̂∗1(k) = r̂∗2(k) = 0; ii)

0 < r̂∗∗1 (k), r̂∗∗2 (k)< 1; and iii) r̂∗∗∗1 (k) = r̂∗∗∗2 (k) = 1.11 However, two equilibria occur under special

circumstances: for r̂∗1(k) = r̂∗2(k) = 0 it must be that x1 = x2 = 0, and for r̂∗1(k) = r̂∗2(k) = 1 it must

be that y1 = y2 = 0. For this reason, we remain primarily focused on the more likely equilibrium

with 0 < r̂∗1(k), r̂
∗
2(k) < 1. Proposition 4 shows that this particular equilibrium is stable only if the

aggregate attention paid to personal experiences is larger than the aggregate attention we pay to

experiences shared through the network.

Proposition 4. Consider the setting above and assume that xi,yj > 0, for any i, j ∈ {1,2}, implying that

there is a unique equilibrium with 0 < r̂∗1(k), r̂
∗
2(k) < 1. Perturbating r̂1(k) or r̂2(k) away from this equi-

librium yields two outcomes in terms of equilibrium stability:

• If γ1 + γ2 > 1, then recall probabilities converge back to the equilibrium above.

• If γ1 +γ2 < 1, then recall probabilities diverge away from the equilibrium above toward either r̂1(k) =

r̂2(k) = 0 or r̂1(k) = r̂2(k) = 1.

Proof. See Appendix E.5.

Proposition 4 shows that if the aggregate attention paid to the social network exceeds the ag-

gregate attention to own experiences, then an incremental positive shock to the recall probability

10See Appendix A.3 for details.
11As shown in Appendix A.3 and visualized in Figure 2, in the case of γ1 + γ2 > 1, the equilibria are (r̂∗∗1 (k), r̂∗∗1 (k))

and (r̂∗∗∗1 (k), r̂∗∗∗1 (k)), whereas in the case of γ1 + γ2 < 1 all three are equilibria.
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of one person will push r̂1(k) and r̂2(k) toward 1, whereas a small negative shock to an individual

recall probability will converge r̂1(k) and r̂2(k) toward 0. On the contrary, if the aggregate attention

paid to the social network does not surpass aggregate attention to own experiences, then a shock

to an individual recall probability cannot pull recall probabilities away from their equilibrium.

Figure 2 visualizes the stability properties of this equilibrium for both cases.

Figure 2: Equilibrium Stability

0 1

0

1

0 1

0

1

Note: Panel (a) exhibits the stability of recall probabilities when aggregate attention to the social network is lower than aggregate

attention to own experiences; panel (b) presents the stability of recall probabilities when aggregate attention to the social network

exceeds aggregate attention to personal experiences.

An example illustrates the intuition. Without loss of generality, suppose that there is an id-

iosyncratic one-time shock to the recall probability of individual 1 for high inflation (k = H) because

individual 1 is experiencing higher gas prices in her location. This information is shared with the

social network via Facebook; the network pays excessive attention to this network information,

by, e.g., re-posting it on Facebook; the information feeds back to individual 1 (the originator), and

the chain repeats itself until everyone in the social network recalls high inflation events almost

with certainty, that is, r̂1(H), r̂2(H) → 1. By contrast, suppose that the network’s attention to the

information shared by individual 1 does not exceed attention to own experiences (e.g., there is

little re-posting of such information on social media); so the likelihood that the information comes
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back to the originator is very low and thus (r̂1(H), r̂2(H))→ (r̂∗∗1 (H), r̂∗∗2 (H)).

Corollary 2 provides stability outcomes for the special cases when one individual in our two-

person network pays full attention to own experiences versus when one individual pays full at-

tention to the other’s experiences.

Corollary 2. Consider the case when there is a unique equilibrium, (r̂∗∗1 (k), r̂∗∗2 (k)). Then, one individual

paying full attention to own experiences is sufficient for the equilibrium to be stable, whereas one individual

paying no attention to own experiences is sufficient for the equilibrium to be unstable.

Proof. Follows directly from Proposition 4.

2.4 Testable Implications for Inflation Expectations

We now link recall probabilities with the focal object of the current paper: inflation expectations.

Consistent with our two hypotheses of interest studied above, inflation can be in either one of two

regimes: a high regime (H) with inflation equal to π̄H and a low regime (L) with inflation equal to

π̄L. We assume that the presence of the two regimes and the inflation levels associated with each

regime are common knowledge. However, distinct experiences and, as a result, distinct prob-

abilities of recall lead to heterogeneous perceived probabilities assigned to each one of the two

events, that is, to high and low inflation events, which further implies heterogeneous inflation

expectations.

We formalize this link between experiences and perceived probabilities of a hypothesis as fol-

lows: Given probabilities of recall, individual j will draw with replacement Tj events from her

set of experiences, Ej ∪ E1→j ∪ ... ∪ Ej−1→j ∪ Ej+1→j... ∪ ENj+1→j. Let Rj(k) be the number of times

that j successfully recalls events aligned with hypothesis k ∈ {H, L}; that is, Rj(k) has a binomial

distribution Rj(k)∼ Bin(Tj, r̂j(k)). From here, individual j’s perceived probability that regime k will

realize is pj(k) =
Rj(k)

Rj(H)+Rj(L) for any k ∈ {H, L}.

Therefore, individual j’s expected inflation is given by

Ejπ = pj(H)π̄H + (1 − pj(H))π̄L = pj(H)(π̄H − π̄L) + π̄L (12)

where pj(H) is the source of heterogeneous expectations, and it is through that variable that so-

cial interaction affects inflation expectations. More specifically, Proposition 5 shows that social
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interaction propagates inflation expectations whenever it amplifies the recall probability of events

linked to the hypothesis of high inflation. The intuition behind this result is that an increase in

r̂j(H) increases, on average, the odds of successful recalls of experiences aligned with hypothesis

H, that is, Rj(H). An increase in the latter raises the probability that individual j assigns to the

high inflation regime, and therefore, her inflation expectations as shown in equation (12).

Proposition 5. All else equal, if social interaction amplifies (respectively, mitigates) the recall probability

for events related to the high regime for inflation, then it will lead to an increase (respectively, decrease) in

inflation expectations on average.

Proof. See Appendix E.6.

A direct, important implication of Proposition 5 is that the stability properties for the recall

probability translate into the same stability properties for inflation expectations. As a result, if the

aggregate attention paid to the social network exceeds the aggregate attention to own experiences,

then a small perturbation to the recall probability of one person will push r̂1(H) and r̂1(H) toward

0 or 1, with expectations converging toward E1π = E2π ∈ {π̄L, π̄H}. On the contrary, if the aggre-

gate attention paid to the social network does not surpass aggregate attention to own experiences,

then a shock to an individual recall probability cannot pull recall probabilities away from their

equilibrium, Ejπ = p∗∗j (H)(π̄H − π̄L) + π̄L, where p∗∗j (H) is the (average) perceived probability

of the high regime associated with r∗∗j (H).

To see this, consider the simple network of only two individuals we analyzed in Section 2.3.

First, let’s positively perturbate the recall probability of hypothesis H for individual j only around

the stable equilibrium, where ∂r̂i(H)
∂r̂j(H)

< 1, in the case when γ1 + γ2 > 1, as shown in panel (a) of

Figure 2. The perceived probability pj(H) will also increase, putting upward pressure on the ex-

pected inflation of individual j. Since the two individuals are connected through the network, the

increase in r̂j(H) will induce an increase in r̂i(H), which in turn increases the perceived probabil-

ity of individual i for regime H. The response of inflation expectations of individual i given the

change in the expectations of individual j is given by12

12The derivation is described here:

∂E2π

∂E1π
=

∂E2π

∂p1(H)

∂p2(H)

∂r̂2(H)

∂r̂2(H)

∂r̂1(H)

∂r̂1(H)

∂E1π
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∂Eiπ

∂Ejπ
= β̃i =

∂pi(H)

∂pj(H)
∈ (0,1) (13)

where ∂pi(H)
∂pj(H)

∈ (0,1) follows from the fact that ∂r̂i(H)
∂r̂j(H)

∈ (0,1). Clearly, in this case, a small pertur-

bation to the inflation expectations of individual j cannot destabilize inflation expectations away

from the equilibrium because the response to the expectations of others is always less than 1.

Now, consider the case when γ1 + γ2 < 1 as shown in panel (b) of Figure 2. Let’s positively

perturbate the recall probability of hypothesis H for individual j only, around the unstable equilib-

rium, where ∂r̂i(H)
∂r̂j(H)

> 1. The perceived probability pj(H) will increase, leading to upward pressure

on the expected inflation of individual j. The increase in r̂j(H) will induce a higher increase in

r̂i(H), which in turn increases the perceived probability of individual i for regime H. Then, the

response of inflation expectations of individual i is given by

∂Eiπ

∂Ejπ
= β̃i =

∂pi(H)

∂pj(H)
> 1 (14)

where ∂pi(H)
∂pj(H)

> 1 stems from the fact that ∂r̂i(H)
∂r̂j(H)

> 1. Contrary to the case with γ1 + γ2 > 1, now a

small perturbation to the inflation expectations of individual j destabilizes inflation expectations

away from the equilibrium because the response to the expectations of others is always higher

than 1. We return to this discussion at the end of the empirical analysis in Section 5.1.

Finally, we summarize our three main testable implications of social interaction for the forma-

tion of inflation expectations:

1. Social interaction has an effect on inflation expectations if people pay attention to experiences

shared by others.

2. In inflationary environments, networks of common demographics propagate expectations if

they increase the similarity between shared experiences and the event of high inflation.

3. Idiosyncratic shocks can destabilize inflation expectations if aggregate attention to the expe-

riences of the social network exceeds aggregate attention to personal experiences.

Our theoretical framework provides additional implications: First, social interaction increases

where ∂E2π
∂p1(H)

= (π̄H − π̄L) and ∂E1π
∂r̂1(H)

= ∂E1π
∂p1(H)

∂p1(H)
∂r̂1(H)

= (π̄H − π̄L)
∂p1(H)
∂r̂1(H)

. Substituting for these two expressions, we

have that ∂E2π
∂E1π =

∂pi(H)
∂pj(H)

.
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inflation expectations if the relative relevance of shared experiences with the high inflation hy-

pothesis exceeds the relative irrelevance of shared experiences with that same hypothesis. Second,

if the relative relevance of shared experiences with the high inflation regime exceeds their relative

irrelevance, then attributing more attention to the experiences of the social network and less at-

tention to own experiences further increases inflation expectations. By contrast, if the relative

irrelevance of shared experiences with the high inflation regime exceeds their relative relevance,

then attributing more attention to the experiences of the social network and less attention to own

experiences mitigates inflation expectations. Third, if the similarity between shared experiences

and high inflation is increasing in common demographics, then the likelihood that social interac-

tion propagates inflation expectations is higher if people are more attentive to individuals with

whom they share a larger number of demographics.

3 Data

At the heart of the empirical analysis of the relationship between inflation expectations and

the social network lies a novel dataset. This dataset combines dense survey data on inflation ex-

pectations of US consumers with a map of their social network, based on Facebook connections.

Data on consumer inflation expectations come from the Indirect Consumer Inflation Expecta-

tions (ICIE) survey, developed by Morning Consult and the Center for Inflation Research of the

Federal Reserve Bank of Cleveland. These data contain weekly measures of consumer inflation

expectations and precise information on the geographic location and demographic characteristics

of each consumer. Of note, the ICIE survey uses an approach to measuring inflation expectations

that differs from the conventional approach (see Hajdini et al. (2022c) and Hajdini et al. (2022a)).

Instead of asking directly for aggregate inflation expectations, it takes an indirect utility approach

and elicits the change in expected income that would compensate respondents for the expected

change in prices. The survey is nationally representative of the US, with 20,000 observations ev-

ery week. Hajdini et al. (2022a) show that this measure has good properties in terms of how it

measures consumers’ expectations and how it relates to other common measures. The measure

elicits expectations of changes in individual prices instead of aggregate prices; so the social net-

work would not influence an aggregate variable, but rather on the price changes that individuals

expect to experience.
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The granularity of our analysis requires a large enough sample size of respondents at the

county level – our geographical unit of analysis – to obtain statistical significance. Without loss

of generality, this requirement leads us to use a monthly frequency as the time unit. The main

variables of interest that the survey records include the identity of counties, gender (male-female),

income brackets (less than 50k, between 50k and 100k, and over 100k), age (18-34, 35-44, 45-64,

65+), and political party (Democrat, Republican or Independent). Hajdini et al. (2022a) discuss

how the expectations of some of these groups behave in the time series. To remove outliers, we

drop the top and bottom 5 percent of responses at each point in time. We use data from February

2021 to July 2023.

Data on social connections at the county level come from the Social Connectedness Index

Database (SCI). The SCI was first proposed by Bailey et al. (2018a) and measures the social con-

nectedness between different regions of the United States as of April 2016, based on Facebook

friendship connections. Specifically, the SCI measures the relative probability that two represen-

tative individuals across two US counties are friends with each other on Facebook. That is,

SCIi,j =
FB Connectionsi,j

FB Usersi × FB Usersj
,

where FB Connectionsi,j denotes the total number of Facebook friendship connections between

individuals in counties i and j and FB Usersi, FB Usersj denote the number of users in location j.

Intuitively, if SCIi,j is twice as large as SCIi,l , a given Facebook user in location i is about twice as

likely to be connected with a given Facebook user in location j than with a given Facebook user in

location l.

In our analysis, we normalize the SCI by county and use it to weigh up the expectations of oth-

ers in connected counties using bilateral social connectedness weights between any two counties

c and k,

ωc,k =
SCIc,k

∑
k

SCIc,k

We then construct the expectations of others:

πe,others
c,t = ∑

k ̸=c
ωc,kπe

k,t (15)
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where πe
k,t denotes the average inflation expectations of individuals in county k at time t. In par-

ticular, this measure implies that a county c will be more exposed to information in county k if

many users of county k have Facebook friendship connections with users in county c.

The analysis uses the SCI for 2016 and holds those weights constant across the sample. Several

properties of the data are convenient for the analysis at hand. The SCI was sampled prior to the

pandemic and the inflation surge in 2021, a period marked by low and stable inflation. Conse-

quently, our measure of social connectedness is unlikely to be influenced by changes in inflation

expectations after 2020. Our analysis assumes that social networks in 2016 are correlated with the

ones after 2020.

It is important to highlight that we do not analyze individual-level social connectedness. The

SCI is a proxy of how connected an average individual of a given county is to individuals in an-

other county. This measure has advantages and disadvantages. Its usefulness for our analysis

stems from the common factors that explain connections between regions, such as past migration

patterns (see Bailey et al. (2018a), Bailey et al. (2022)). In line with this feature of the data, we

are not necessarily interested in the information shared exclusively on Facebook,13 but instead in

common patterns of social connections. The SCI is a proxy for such a deeper social relationship

between individuals spatially separated.

13Our instrumental variables strategy below, which exploits salient local gas prices as the instrument, does suggest
that salient information such as information on local gas prices flows through the network – information that is highly
relevant for the formation of inflation expectations.
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Figure 3: Social Connectedness of Cleveland to Other Counties (ωc=Cleveland,k)

Exposure of Cleveland to other counties

Source: Facebook SCI Weights
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Note: The yellow-to-red color scale represents the degree to which Cleveland is socially connected to other counties, based on

ωCleveland,k . Red indicates higher ωCleveland,k . Source: Social Connectedness Index

To provide a concrete example, consider the social connectedness of Cuyahoga County, where

Cleveland, Ohio is located, with other counties across the United States. Figure 3 illustrates this so-

cial connectedness through a heat map depicting the weights (ωc,k) for c = Cleveland. In Appendix

F, we present similar maps for other counties. The color scheme ranges from light yellow to red,

with red depicting counties that hold greater social significance for Cleveland. We observe three

distinct patterns. First, as expected, geography plays a significant role, with Cleveland showing

stronger connections to nearby counties. Second, interestingly, we also observe robust social links

with more distant counties. For instance, individuals residing in Hillsborough, Florida (Tampa)

and Clark County, Nevada (Las Vegas) hold importance for Cleveland individuals. Third, there

is substantial heterogeneity in social connectedness. Even neighboring counties show varying

degrees of influence on Cleveland. This is the kind of variability that we exploit in the paper.

In reverse, we also present the social connectedness of other counties to Cuyahoga County,

Ohio. The heat map in Figure 8 in Appendix F shows the weights ωc,k for k = Cleveland. Again,

as in the illustration above, three patterns emerge: geography plays an important role; counties
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far away are also socially connected to Cleveland; and there is substantial heterogeneity in con-

nectedness. Relative to before, an asymmetry in connectedness stands out, a general feature of the

data that the analysis will subsequently exploit as a source of variation.

4 Empirical Analysis

4.1 Overview of Empirical Challenges and Strategy

This section shows that consumers incorporate information from their social networks when form-

ing expectations. To do so, our main analysis employs county averages of social connectedness to

gauge the impact of interconnected counties on inflation expectations.

Understanding the role of social networks for shaping inflation expectations comes with sev-

eral challenges. First, social networks might be spuriously correlated with other types of networks.

For example, nearby counties are more likely to be socially connected, but at the same time, they

might also be connected by trade relationships. Second, even if social networks play a role for

inflation expectations, our quantitative estimates could be affected by endogeneity concerns such

the Manski (1993) reflection problem. It is important to highlight that the reflection problem in-

duces a bias in the estimated effects of social networks on inflation expectations only when the

network matters for expectations in the first place. By contrast, if the social networks are, in real-

ity, irrelevant for individual expectations, then the Manski (1993) reflection problem disappears.

In Appendix B.1 we prove this result.14

Our analysis utilizes different approaches to overcome such challenges. As a first step, we

establish that the network matters per se. We do so by showing that inflation expectations of the

network bear a significant coefficient, even after taking into account common aggregate factors

(a time fixed effect) and time-varying county-specific variation (expectations of others in the own

county). The time-varying county-level controls capture the role of common trends, close-by con-

nections due to proximity in space, and county-specific shocks, such as local price shocks. We

interpret the finding of this first step as indicating that there is a correlation in the inflation expec-

14We prove this result in Appendix B.1. Specifically, we analytically compute the degree of bias in the OLS estimate
of the effect of the expectations of others on individual expectations, stemming from the reflection problem. We show
that, generally, the only case when the bias induced by the reflection problem disappears is when the true effect of
the expectations of others on individual expectations is absent. As a result, it must be that any non-zero empirical
correlation between individual expectations and the expectations of others indicates the relevance of social networks
for inflation expectations.
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tations of counties that are connected through social networks.15 As a second step, once we have

established that the network matters, we employ several empirical strategies to identify whether

information is transmitted through social networks or other networks that may be spuriously cor-

related with social networks. Our first strategy is to exclude proximate counties and to only keep

counties beyond a certain distance; hence, we are ignoring data from counties that are more likely

to share spatial shocks. Our second main strategy is to construct county × demographic × time

networks that allow us to include county-time fixed effects. These fixed effects absorb any vari-

ability that affects all demographic groups in a county in a given period of time equally, alleviating

concerns about spatial spillovers, trade relationships, or demand spillovers from nearby regions,

among other confounding factors.

As a third strategy to address the challenges of analyzing expectations in social networks, we

apply an instrumental variables approach that addresses any remaining endogeneity concerns,

including those implied by the reflection problem. To do so, we obtain exogenous cross-sectional

variation in inflation expectations from a shift-share approach that combines national changes in

gas prices and the county-level variation in the share of drivers. This strategy allows us to find

an unbiased estimate of the relevance of the social network, exploiting the variation of specific

exogenous shocks, in this case coming from gas prices. Since we know that higher gas prices lead

to higher inflation beliefs, this step also provides a glimpse into the type of information that flows

through the social network: On average, people must be talking about salient inflation-relevant

experiences, such as prices at the pump.

Across all of these strategies, we find strong evidence in favor of the hypothesis that social

networks are important in determining individuals’ inflation expectations.

4.2 The Unconditional Influence of Expectations of Others

Our analysis starts off by showing descriptive evidence that the first prediction of the model

holds in the data: Inflation expectations are correlated with expectations in other counties linked

through the social network. This result holds at the individual level and also at the county level

(see Appendix C for the county-level results).

15Note that concerns about endogeneity as embodied by the reflection problem (Manski (1993)) arise only as a
quantitative concern, relevant only if the network matters in the first place. Therefore, before addressing the reflection
problem, we establish that there is evidence that individuals’ inflation expectations are affected by the expectations of
individuals in socially connected counties in the first place.

24



4.2.1 Individual-Level Evidence

To establish this result in support of the first model prediction, we estimate several specifications.

These specifications use individual-level data that allow us to take into account county and time

fixed effects. Formally, we estimate:

πe
i,c,t = β0 + β1πe

−i,c,t + β2 ∑
k ̸=c

ωc,kπe
k,t + ε i,c,t, (16)

where πe
i,c,t denotes the inflation expectations of i, located in county c at time t. πe

−i,c,t denotes the

“leave-out” average inflation expectations of county c, which excludes the expectations of indi-

vidual i from the county average. All regressions are weighted by the number of respondents in a

county in a given period of time.

Across specifications, we find strong evidence for the first prediction of the model: the expecta-

tions of others are associated with individual inflation expectations. Table 1 reports the estimation

results. The first row displays the coefficient associated with the network-weighted inflation ex-

pectations of other counties, and the second row displays the coefficient for county “leave-out”

inflation expectations. The OLS estimates in Column 1 show that the elasticity of inflation ex-

pectations of an individual with respect to inflation expectations in other counties is 0.19. The

inclusion of time fixed effects that absorb time variation in inflation common to all counties leaves

this result almost unchanged, with a coefficient of 0.18 (Column 2). Likewise, the inclusion of

county fixed effects that capture characteristics of the county that are correlated with the network

and invariant over time also leaves this result with a similar magnitude, with a coefficient of 0.25

(Column 3). Absorbing most of the variation by including both county and time fixed effects again

implies a statistically significant coefficient (Columns 4 and 5). Now, an increase of 1 percentage

point in the inflation expectations of others leads to an increase of 0.05 to 0.12 percentage points

in an individual’s inflation expectations.
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Table 1: Effect of Expectations of Others on Own Inflation Expectations

(1) (2) (3) (4) (5)
Expectations of Others 0.194*** 0.176*** 0.252*** 0.115** 0.051***

(0.043) (0.050) (0.074) (0.047) (0.017)
County Expectations 0.755*** 0.732*** 0.603*** 0.557***

(0.048) (0.042) (0.058) (0.049)
Time FE No Yes No Yes Yes
County FE No No Yes Yes Yes
Observations 1,926,282 1,926,282 1,926,282 1,926,282 1,926,282
R-squared 0.017 0.017 0.017 0.014 0.017

Note: The table shows the results of regression (16), where the dependent variable πe
i,c,t denotes the inflation

expectation of individual i in county c at time t. Regressions are weighted by the number of responses in a county
in each period. Standard errors are clustered at the county level.

Finally, these results are robust to different specifications. For example, we show that poten-

tially similar shocks experienced in nearby counties do not explain the results. To do so, we con-

struct the network-weighted expectations by explicitly excluding counties located within a certain

radius of the respondent’s county. We then repeat the above set of exercises. In Table 6 in Ap-

pendix G we report the results for this exercise. Across several specifications, we find that the in-

flation expectations from long-distant counties connected by social networks affect an individual’s

own inflation expectations. Additionally we control for several demographic characteristics, in-

clude those characteristics interacted with time fixed effects, are the results are mostly unchanged.

While the main takeaway from this section lies in the robust statistically significant relation-

ship between beliefs in the social network and individual inflation expectations, the precise results

likely remain biased. For example, as we prove in Appendix B.2, taking into account time fixed

effects does not mean that the estimate of β2 does not suffer from biases due to the reflection

problem.16 We also show in Appendix B.3 that the inclusion of the time fixed effect might bias

downward the coefficient when the network is common, which can explain the changes in the

coefficient. In Section 5, we therefore use an instrumental variable approach to obtain an unbi-

ased estimate that would address those issues. Nonetheless, the set of estimates presented in this

section consistently provides strong evidence of a stylized fact that is in line with the first predic-

tion of the theoretical model: When forming expectations, consumers are generally attentive to

16We refer the reader to Lee and Yu (2010) for an insightful discussion of the biases that spatial models generally
suffer from, even when one appropriately accounts for time and individual fixed effects.
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experiences shared through their social networks.

Another potential problem that this regression could have is that the weights are correlated

with some other characteristics that can explain the results. One such variable is the exposure

to similar pricing structures. This exposure might stem from the demographic characteristics of

the respondents, which influence their propensity to purchase specific types of goods, or it could

arise from groups of people encountering comparable stores that are subject to similar cost shocks.

To address this issue, we have incorporated demographic-time fixed effects into our model. The

results, as presented in Table 7 in Appendix G, affirm the robustness of our findings against the

inclusion of these demographic controls, even when they are interacted with time fixed effects.

Notably, the point estimates remain significant and exhibit a slight increase in magnitude.

An additional challenge is to separate the transmission of inflation expectations through social

networks from the transmission through other networks that affect prices and are correlated with

the social network. Consider, for instance, the scenario where retailers implement uniform pric-

ing strategies across various locations. In such cases, counties sharing common retail chains often

experience synchronized price adjustments (Garcia-Lembergman (2020)), potentially impacting

inflation expectations. In order to control for propagation of shocks through the retail chains

networks, we construct exposure to the retail chains networks using weights that characterize

the connectedness of each pair of counties in the retail chain dimension, as measured by Garcia-

Lembergman (2020). The weights place higher weight to counties k that are important in terms

of sales for the dominant retail chains in county c. Subsequently, we calculate the exposure to

inflation expectations in counties with shared retail chains and incorporate this as a control vari-

able in our regression analysis. As demonstrated in Table 9 in Appendix G, including controls for

inflation expectations in counties with shared retail chains does not alter our main findings.

In the next section we also provide another set of results that show that it is unlikely that the

main findings come from other characteristics different than the social network. By splitting the

network at the county level, we can add county-time fixed effects, controlling for common varia-

tion at the county level, including price shocks.
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4.3 Similarity in the Social Network

In line with the second and third predictions of the model, this subsection shows that demographic

similarity increases the effect of beliefs in the social network on individual inflation expectations

while dissimilarity tends to reduce it. This finding concurs with the original intuition in Festinger

(1954) that people may be more likely to pay attention to the expectations of groups that share

similar characteristics. It also concurs with our theoretical results on the amplification of beliefs

based on relevant and irrelevant experiences. Finally, incorporating the demographic dimension

into the analysis allows us to improve the identification strategy.

In order to examine the influence of demographic similarity and dissimilarity on inflation ex-

pectations through the network, we construct exposure to inflation expectations of similar groups

in distant counties. In particular, we define such exposure as:

∑
k ̸=c

ωc,kπe
d,k,t

where πe
d,k,t denotes the average inflation expectations across individuals with demographic char-

acteristic d located in county k in period t. The demographic characteristics we consider include

gender (male, female), political affiliation (Democrats, Republicans, Independents), income (less

than 50k, between 50k and 100k, over 100k), and age (18-34, 35-44, 45-64, 65+).

We then estimate the following specification:

πe
i,d,c,t = β0 + β1πe

−i,d,c,t + β2 ∑
k ̸=c

ωc,kπe
d,k,t + γct + ε i,c,t. (17)

Equation (17) represents a direct test of the model predictions 2 and 3. πe
i,d,c,t denotes the inflation

expectations of individual i, with demographic characteristic d, in county c at time t; πe
−i,d,c,t rep-

resents the average inflation expectations of all the other individuals in that same county c that

share the same demographic characteristics d with individual i. If the similarity between individu-

als matters for the transmission of inflation expectations, then we expect a positive estimate of β2.

Note that an additional advantage of combining the SCI weights with information on demo-

graphics is that we can include county-time fixed effects. The main concern that this inclusion

addresses is that counties connected by social ties are exposed to common regional shocks. For
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example, San Francisco and LA are connected socially, and, at the same time, there are common

shocks in California that affect inflation expectations in both cities. Hence, even if San Francisco

and Los Angeles were not connected by the social network, we would expect their inflation expec-

tations to co-move. The county-time fixed effects control for any such common regional shock in

California and even shocks in the county itself. The identifying variation comes from comparing

the inflation expectations of individuals who live in the same county and are connected to the

same other counties, but who have absorbed different experiences of others because they belong

to different demographic groups.

Our analysis sets out by illustrating the importance of demographic similarity through the

lens of gender. This particular similarity feature has the appeal that unlike other demographics –

evaluated subsequently – it does not depend on people’s choices, as, for example, in the case of

political affiliation. In the case of gender, variation stems from a given demographic characteristic

rather than a possibly endogenous choice.

Results are reported in Table 2. They show that gender similarity plays an important amplify-

ing role for social interaction in the process of belief formation: The effect of one’s social network

turns out to be significant and relevant. A 1 percentage point increase in the inflation expecta-

tions of the gender-specific network increases own-inflation expectations between 0.28 and 0.78

percentage points. Notably, after we additionally filter out granular time, state-time, county, and

county-time fixed effects, the coefficient is always statistically significant and the fixed effects in-

crease its magnitude. In Appendix G, Tables 10, 11, and 12 present results for similarity of political

affiliation, income, and age, respectively. Qualitatively, the same findings hold.
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Table 2: Similarity Effect by Gender

(1) (2) (3) (4) (5) (6)
Similarity − Network 0.282*** 0.334*** 0.306*** 0.359*** 0.413*** 0.777***

(0.038) (0.028) (0.057) (0.047) (0.052) (0.092)
Similarity − County 0.684*** 0.667*** 0.610*** 0.593*** 0.535*** 0.204***

(0.040) (0.029) (0.043) (0.029) (0.015) (0.056)
County FE No No Yes Yes Yes Yes
Time FE No Yes No Yes Yes Yes
State-Time FE No No No No Yes Yes
County-Time FE No No No No No Yes
Observations 1,910,679 1,910,679 1,910,679 1,910,679 1,910,679 1,910,679
R-squared 0.026 0.026 0.026 0.026 0.027 0.030

Note: The table shows the results of estimating specification (17), where the dependent variable πe
i,d,c,t denotes the inflation

expectations of individual i of gender d in county c at time t. Similarity − Network is the average of inflation expectations of

individuals of the same gender in other counties. Similarity − County is the average of inflation expectations of respondents of

the same gender within her/his own county. Regressions are weighted by the number of responses in a county in each period.

Standard errors are clustered at the county level.

Further evidence of the importance of demographic similarity within demographic groups

emerges when the analysis explicitly includes a measure of dissimilarity, or interference, as in

Corollary 3. To do so, we estimate specification (17), but include as a variable that captures dissim-

ilarity the network-weighted expectations of the respectively other, omitted demographic group,

∑k ̸=c ωc,kπe
−d,k,t. Two results emerge: First, such dissimilarity of others – denoted by “Dissimilarity-

Network” in Table 14 in Appendix G – generally has a zero effect on the formation of inflation

expectations and it is always smaller than the similarity effect, which continues to be highly sig-

nificant, always positive and higher than the point estimates in Table 1.

Viewed through the lens of the model, these results suggest that the beliefs of "other others"

embody relatively irrelevant experiences that can affect expectations on a lower extent, probably

not affecting individuals expectations at all. At the same time, beliefs in a similar group tend

to embody relatively relevant experiences that raise inflation expectations. Analysis of similarity

and dissimilarity defined across a range of demographic characteristics – age, income, and po-

litical choice – affirms these findings: Beliefs in the social network have a strong impact on the

process of belief formation, and the impact is higher in more similar groups. Table 13 and Table

15 in Appendix G show these results.
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5 Transmission of Exogenous Shocks through the Network

In order to address any remaining concerns in terms of identification, this section applies an in-

strumental variable strategy. The approach follows Hajdini et al. (2022a) and utilizes a shift-share

approach that combines cross-county variations in the proportion of individuals who use cars in

their commute at a specific time and monthly fluctuations in national gas prices. The underlying

idea is that areas with a higher intensity of car usage will experience a more pronounced impact

of national gas price shocks, creating exogenous, county-specific variation.

First, as a first stage we show that the shift-share instrument affects local inflation expectations.

We estimate

πe
i,c,t = αc(i) + γt + βPgas,t × Commc(i) + ε i,c,t, (18)

where πe
i,c,t denotes the inflation expectations of individual i in county c at time t; Pgas,t denotes

the average national price of regular gas according to the US Energy Information Administra-

tion;17 Commc(i) denotes the share of people who use their own car to commute according to the

ACS18; αc(i) denotes a county fixed effect and γt a time fixed effect. We estimate this regression

specification for the period of February 2021 through July 2023. Table 3 reports the results. Across

specifications, we observe a positive, highly statistically significant effect of the instrument on

inflation expectations. A dollar increase in the price of gas increases individual-level inflation ex-

pectations between 3.171 and 3.958 percentage points in a county where everybody uses their car

to commute, compared to a counterfactual county where nobody uses a car to commute.

17We use the national gas price assuming that local county-level shocks in the cross section are less likely to influence
US demand for gas, and therefore price. This also applies to local policies that can jointly influence expectations and
local gas price. We rely on the fact that, since gas is very tradeable, its price is correlated across regions following
aggregate gas price shocks.

18This measure is not correlated to the weights. Figure fig:corrgasinAppendixF.2showsresults f orregressionateachcountylevel,resultsshowthat f ormostcountiesthecoe f f icientisverysmallandnonstatisticallydi f f erent f romzero.Inaddition, aregressionthataddsallthecountieshasaverysmallandnonstatisticallydi f f erent f romzerocoe f f icient.
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Table 3: Cross-Sectional Effect of Gas Price on Expectations

(1) (2) (3) (4) (5) (6)
Pgas,t -0.874** -1.060

(0.375) (0.211)
Commc(i) -7.457*** -8.383***

(1.347) (1.130)
Pgas,t × Commc(i) 3.171*** 3.318*** 3.310*** 3.414*** 3.958*** 0.834**

(0.513) (0.386) (0.444) (0.407) (0.475) (0.379)
County FE No Yes No Yes Yes Yes
Time FE No No Yes Yes Yes Yes
Sample All All All All Men Female
Observations 1,239,680 1,239,680 1,239,680 1,239,680 606,305 632,750
R-squared 0.008 0.012 0.011 0.015 0.014 0.015

Note: Columns (1)-(4) show results from estimating the first-stage specification πe
i,c,t = αc(i) + γt + βPgas,t ×

Commc(i) + εi,c,t, where πe
i,c,t denotes the inflation expectations of individual i at time t; Pgas,t denotes the average

national price of regular gas; Commc(i) denotes the share of people who use their own car to commute according to

the ACS; and αc(i) and γt are county and time fixed effects included as appropriate in the first 4 columns. Columns (5)

and (6) show the results from estimating πe
i,d,c,t = αc(i) + γt + βdPgas,t × Commc(i) + εi,d,c,t, where d ∈ (male, f emale).

Regressions are weighted by the number of responses in a county in each period. Standard errors are clustered at the

county level

As a refinement to the first stage, we allow for differences in sensitivity to the shift-share mea-

sure by gender. That is, we estimate the following specification:

πe
i,d,c,t = αc(i) + γt + βdPgas,t × Commc(i) + ε i,d,c,t, (19)

where, as before, πe
i,d,c,t denotes the inflation expectations of individual i in county c with de-

mographic characteristic d at time t. This approach is motivated by the results in D’Acunto et al.

(2021a), who find that gender differences in inflation expectations can be explained by gender roles

associated with shopping experiences. In particular, D’Acunto et al. (2021a) show that men tend to

refer more to gasoline prices when they form expectations. Column (5) shows the estimated sensi-

tivity to the shift-share measure for male respondents only, and Column (6) for female respondents

only. Results show that men have a higher, statistically significant coefficient than women.

We exploit the exogenous variation embodied in the above specification to show two results:

On the one hand, the exogenous local variation in gas prices in other counties causally matters for

individual inflation expectations in a given county. That is, the information transmitted through
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the social network causally matters for the formation of individual inflation expectations. On the

other hand, inflation expectations in other counties – transmitted through the social network –

likewise causally matter for the formation of individual inflation expectations.

To arrive at these insights, we construct the variable Gas_e f f ectd,c,t = β̂dPgas,t ×Commc(i), based

on the above equation (19), which contains county-time variation. Then, using the network link-

ages, we estimate regression specifications of the type:

πe
i,d,c,t = αc + γt + β1πe

−i,d,c,t + β2 ∑
k ̸=c

ωc,kGas_e f f ectd,k,t + ε i,d,c,t, (20)

While time fixed effects have already been filtered out from the measure Gas_e f f ectd,c,t, we nonethe-

less include a time fixed effect γt in some specifications. As in the previous exercises, we take into

account average county-gender inflation expectations, πe
−i,d,c,t, which exclude the respondent’s

own expectations.19 Overall, these specifications show whether or not information embedded in

local gas prices in other counties causally affects individual expectations in a given county.

To apply the instrument to inflation expectations, we instrument the weighted inflation expec-

tations with the weighted Gas_e f f ectd,c,t. That is, we estimate the following specification:

πe
i,d,c,t = αc(i) + γt + ρ1πe

−i,d,c,t + ρ2 ∑
k ̸=c

ωc,kπe
d,k,t + ε i,d,c,t, (21)

where inflation expectations of others have been instrumen ted by the respective Gas_e f f ectd,c,t

measure.

19Alternatively, we run regressions where we control for the own-county/demographic gas effect Gas_e f f ectd,c,t.
Appendix G, Table 16 presents the findings, which are very similar.
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Table 4: Effect of Gas Price Variation in the Social Network on Inflation Expectations

(1) (2) (3) (4) (5) (6)
∑k ̸=c ωc,kGas_e f f ectc,t 0.190*** 1.925***

(0.054) (0.222)
∑k ̸=c ωc,kGas_e f f ectc,d,t 1.980*** 0.571***

(0.200) (0.190)
∑k ̸=c ωc,kπe

d,k,t 0.359*** 0.491***
(0.047) (0.088)

πe
−i,c,t 0.652*** 0.519***

(0.043) (0.030)
πe
−i,d,c,t 0.532*** 0.365*** 0.593*** 0.561***

(0.023) (0.012) (0.029) (0.040)
Sample All All Men Female All All
Time FE No Yes Yes Yes Yes Yes
County FE Yes Yes Yes Yes Yes Yes
Regression OLS OLS OLS OLS OLS IV
F-Test - - - - - 1459
Observations 1,926,282 1,926,282 882,338 1,028,341 1,910,679 1,910,679
R-squared 0.017 0.018 0.020 0.018 0.026 0.012

Note: This table shows results from estimating three specifications. Columns (1) and (2) show results for πe
i,c,t = αc + γt +

β1πe
−i,c,t + β2 ∑k ̸=c ωc,kGas_e f f ectk,t + εi,c,t. Columns (3) and (4) for πe

i,d,c,t = αc + γt + β1πe
−i,d,c,t + β2 ∑k ̸=c ωc,kGas_e f f ectd,k,t +

εi,d,c,t,. Column (5) shows the results for πe
i,d,c,t = αc + ρ1πe

−i,c,t + ρ2 ∑k ̸=c ωc,kπe
d,k,t + εi,d,c,t. Column (6) runs the same specifica-

tion as for Column 5, but instruments ∑k ̸=c ωc,kπe
d,k,t with ∑k ̸=c ωc,kGas_e f f ectd,k,t. πe

i,d,c,t denotes the inflation expectations of

individual i of gender d in county c at time t; πe
−i,c,t inflation expectations of county c at time t excluding individual i; πe

−i,d,c,t

inflation expectations of respondents of demographic d in county c at time t excluding individual i; and πe
d,k,t gender d inflation

expectations in county k at time t; Gas_e f f ectd,k,t denotes the gas effect variable constructed as described in the text; and αc and

γt are county and time fixed effects. Regressions are weighted by the number of responses in a county in each period. Standard

errors are clustered at the county level.

Two findings with a causal interpretation emerge: First, the variation captured by the gas effect

variable has a significant effect on inflation expectations when propagated through the network.

Table 4 shows this result in its first 4 columns. Columns (1) and (2) use a common gas effect for

both genders, whereas Columns (3) and (4) use a gender-county-specific gas effect, splitting the

sample by gender, with results for men reported in Column (3) and for women in Column (4).

Second, when we apply the instrumental variables approach, the coefficient estimate on the infla-

tion expectations of others increases compared to the coefficient estimate from the OLS regression.

As shown before, the network effect is 0.359, considering time fixed effects (Column (5)). The IV

coefficient is 0.491, more than a third higher (Column (6)). These results indicate that when in-

flation expectations are affected by certain salient prices, such as gasoline prices, the transmission
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through the network is stronger. Our finding aligns with the result in Coibion and Gorodnichenko

(2015b) that consumers pay more attention to gas prices than to the prices of other goods.

Besides establishing causality, instrumentation – by virtue of the nature of the instrument –

also provides a glimpse into the content of the information that flows through the social net-

work and the memories recalled (Bordalo et al. (2023)): Gas prices are a salient object, and social

networks tap salient experiences from the memory database, perhaps not surprisingly. At the

same time, gas prices are inflation-relevant rather than irrelevant. In line with our model predic-

tions, this finding suggests that communication through social networks on average must transmit

inflation-relevant, salient price experiences.

5.1 Implications for Stability

A further natural question arises in the same context of communication through social networks:

Are social networks a stabilizing force for the formation of inflation expectations? We answer

this question by building on and generalizing the simple framework that analyzes the inflation

expectations feedback loop in Section 2.4.

Our empirical findings suggest that social networks are not associated with unstable propaga-

tion of shared experiences. To see this, consider our generic regression specification:

πe
t = α + βΩπe

t + εt, (22)

where πe
t =

[
πe

1t πe
2t ... πe

Nt

]′
embeds inflation expectations in county 1 through county N;

εt =

[
ε1t ... εNt

]′
denotes a set of county-specific shocks to inflation expectations such that

εnt ∼ i.i.d.N (0,σ2
n) for any n ∈ {1,2, ..., N}; α =

[
α1 ... αN

]′
denotes a vector of constants (county

fixed effects); β denotes a scalar; and Ω is an N × N matrix with 0-diagonal and with row elements

summing to 1. Importantly, equation (22) represents a generalized version of the relationship be-

tween the inflation expectations of two individuals analyzed in Section 2.4, where β captures the

average of β̃1 and β̃2,20 defined in equation (13) in the case of stability and in equation (14) in the

case of instability. As shown, when total attention to experiences shared by others in the network

20Because our main empirical specifications reside at the individual level with county controls and fixed effects, our
empirical estimates extract the average marginal effect over individuals in a given county. For simplicity of exposition,
the subsequent derivations reside at the county level but with no loss of generality interpreting the index n.
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exceeds (respectively, falls behind) total attention to own experiences, then β̃1, β̃2 ≥ 1 (respectively,

0 < β̃1, β̃2 < 1) and the social network is destabilizing (stabilizing). Consistently, as we show in

what follows, if β > 1 social networks are destabilizing but stabilizing if 0 < β < 1.

To see this, consider the propagation of a one-time county n-specific shock in period t through

the social network, that is, εnt ̸= 0 for some n ∈ {1,2, ..., N} while ε−nt = 0 and εt+k = 0N×1 for

any k ≥ 1. Within period t, the following can be thought to happen: First, εnt will have a direct,

immediate effect on πe
nt = αn + εnt. Second, πe

nt will affect the expectations in the other counties by

propagation through the network. Appendix D provides a thorough description of the feedback

loop taking place within period t through social networks, showing that county-level inflation

expectations converge to finite values when β ∈ (−1,1) but become explosive otherwise, that is,21

πe
t =


(I − βΩ)−1α if | β |< 1

±∞ otherwise
(23)

A one-time county-specific shock to inflation expectations can destabilize inflation expectations in

all the other counties only if | β |≥ 1. In our specification, we have separated the own county effect

from the rest of the counties. We obtain own county shares, ωii, from the data: On average, we

have that ωii = 0.39. With this, the relevant β at the individual level will use the estimates in (21)

as β = ρ1ωii + ρ2(1 − ωii).

Empirically, which scenario are we in? Focusing on the IV empirical results in Column (6)

of Table 4, our estimate of β is given by β̂ = 0.519 < 1, implying that social networks have not

had a destabilizing effect on expectations. However, we note that even though β̂ < 1,it is higher

compared to the OLS result (0.451), suggesting that variation in inflation expectations that is due

to county-level movements in consumers’ exposure to price changes in salient goods, such as

gas, can have larger spillover effects on expectations through social networks. As suggested in

Coibion et al. (2020c), effective communication from policymakers that emphasizes inflation as a

broad rather than as a goods-specific or local phenomenon can help reduce the feedback effects of

social networks.

21We highlight that throughout our empirical analysis, we find the estimate of β to always be positive, but in this
analytical analysis, we do not limit the sign of β in order to be as general as possible.
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6 Conclusion

Our analysis brings to the fore the idea that experiences shared through social networks can

have an impact on the formation of inflation expectations. Our theoretical analysis incorporates

this idea into the framework of Bordalo et al. (2023) of memory and recall. The model shows that

social networks can affect expectations, and provides a set of three main testable implications.

First, social networks can affect expectations. Second, demographics can be an important factor in

affecting the implications of social interactions on expectations. Third, social interaction is more

likely to increase (respectively, decrease) expectations if people interact with a social network with

which they share a larger number of (respectively, fewer) demographic factors. While our theo-

retical analysis is embedded in the context of inflation expectations, it may easily be generalized

to other expectational domains.

Our empirical analysis shows that these predictions, when viewed through the lens of infla-

tion expectations, bear relevance in the empirical environment. In particular, to do so, we take

advantage of a novel, large dataset that merges the inflation expectations of around 2 million US

consumers with their local index of social connectedness. We find that social networks matter for

inflation expectations. We also show that individuals who share similar demographic characteris-

tics tend to pay more attention to each other. We finally show, using exogenous variation, that the

coefficient of interest is high, but in the range of stability suggested by the model.

These findings open up new avenues for exploring the formation of inflation expectations in

the context of social networks. Our analysis represents only a first step as questions for future

work remain aplenty, for example, in the context of stability and multiple equilibria, about the

role of super-nodes in the network, or the transmission of shocks from different regions and of

different sizes. Further work may therefore lead to additional insights with important implica-

tions for policymakers who aim to keep inflation expectations anchored.
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Appendix

A Other Theoretical Results

A.1

We present an example for the similarity function that would yield opposite sign effcets... Let

Sj(e,k | θji) =
e−(e−k)2/2(2−θji)

2

2 − θji

A.2 Effects of Weights on Recall Probabilities

What about paying more attention to a specific individual? The effects that weights ω(θji) have

on the implications of social interaction for recall probabilities are not trivial to analyze. Proposi-

tion 6 provides a condition for which a change in the weight assigned to experiences shared by a

particular individual facilitates the occurrence of inequality in (6).

Proposition 6. Suppose that individual j allocates more attention to experiences shared by individual l at

the expense of attention allocated to experiences shared by individual q; that is, suppose that ωjl increases,

ωjq decreases, and all the other weights remain the same. Then, social interaction is more likely to amplify

the recall probability of hypothesis k if individual l adds more relative relevance than relative irrelevance for

this hypothesis, when compared with individual q:

∑e∈Ek
l→j

Sj(e,k | θjl)− ∑e∈Ek
q→j

Sj(e,k | θjq)

∑e∈Ek
j
Sj(e,k)︸ ︷︷ ︸

marginal relative relevance

>
∑e∈Ek−

l→j
Sj(e,k | θjl)− ∑e∈Ek−

q→j
Sj(e,k | θjq)

∑e∈EK\k
j

Sj(e,k) + ∑e∈EO
j

Sj(e,k)︸ ︷︷ ︸
marginal relative irrelevance

(A.1)

where k− = {K\k,O}, and ∑e∈Ek−
i→j

Sj(e,k | θji) = ∑e∈EK\k
i→j

Sj(e,k | θji) + ∑e∈EO
i→j

Sj(e,k | θji) for any i ∈

{l,q}.

Proof. See Appendix E.4.

We refer to the term on the left-hand side of condition (A.1) as marginal relative relevance and

to the term on the right-hand side as marginal relative irrelevance. Proposition 6 shows that if

the marginal relative relevance exceeds the marginal relative irrelevance, that is, if individual j is

more attentive to individuals who share experiences with relative relevance for hypothesis k while

shifting attention away from individuals who share experiences with relative irrelevance, then it

is more probable that social interaction will amplify the recall probability of hypothesis k.
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Finally, we turn to the effects that common demographic factors have on the recall probability

of hypothesis k in Corollary 3. For simplicity purposes, we assume that the number of common

demographic factors only affects the similarity between hypothesis k and shared events that belong

to the hypothesis k subset of experiences.

Corollary 3. Suppose that Sj(e,k | θji) is increasing in θji for any e ∈ Ek
i→j, but Sj(e,k | θji) = Sj(e,k)

for any e ∈ Ek−
i→j. Social interaction is more likely to propagate the recall probability of hypothesis k if indi-

vidual j allocates more attention to an individual with whom she shares more demographic factors and less

attention to a person with whom she shares fewer demographics.

Proof. It follows directly from Proposition 6.

To illustrate Corollary 3, suppose that the only demographic factor affecting the similarity

function is gender, thus θji ∈ {0,1}. Further, let’s assume that individual j is a female. Corollary 3

implies that, given experiences Ek
i→j, ∑e∈Ek

i→j
Sj(e,k | 1) > ∑e∈Ek

i→j
Sj(e,k | 0), for any i ∈ {l,q}. This

implies that

∑e∈Ek
l→j

Sj(e,k | 1)− ∑e∈Ek
q→j

Sj(e,k | 0)

∑e∈Ek
j
Sj(e,k)︸ ︷︷ ︸

MRR if more attention to another female, less to a male

>
∑e∈Ek

l→j
Sj(e,k | 0)− ∑e∈Ek

q→j
Sj(e,k | 1)

∑e∈Ek
j
Sj(e,k)︸ ︷︷ ︸

MRR if more attention to a male, less to another female

where MRR denotes marginal relative relevance. Given that gender does not affect the right-hand

side of condition (A.1), Corollary 3 implies that social interaction facilitates the amplification of

recall probabilities if individual j interacts more intensively with individuals that share the same

gender as her and less so with with individuals of the opposite gender.

A.3 Implications of the Theoretical Framework for Stability

Consider the setup described in Section 2.3, and recall that the recall probabilities of hypothesis k

for individuals 1 and 2 are given by, respectively

r̂1(k) =
γ1x1 + (1 − γ1)x2

γ1x1 + (1 − γ1)x2 + y1
(A.2)

r̂2(k) =
γ2x2 + (1 − γ2)x1

γ2x2 + (1 − γ2)x1 + y2
(A.3)
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Isolating x1 from (A.2), we can write x1 as x1 =
(x2(1−γ1)+y1)r̂1(k)−(1−γ1)x2

γ1(1−r̂1(k))
. Substituting for x1 into

(A.3), we get

r̂2(k) =
γ2x2 + (1 − γ2)

(x2(1−γ1)+y1)r̂1(k)−(1−γ1)x2
γ1(1−r̂1(k))

γ2x2 + (1 − γ2)
(x2(1−γ1)+y1)r̂1(k)−(1−γ1)x2

γ1(1−r̂1(k))
+ y2

=
[(1 − γ2)y1 + (1 − γ1 − γ2)x2] r̂1(k) + (γ1 + γ2 − 1)x2

[(1 − γ2)y1 − γ1y2 + (1 − γ1 − γ2)x2] r̂1(k) + γ1y2 + (γ1 + γ2 − 1)x2

(A.4)

We proceed in a similar fashion to express r̂1(k) as a function of r̂2(k). Hence, the recall probability

of individual j can be written as a function of the recall probability of individual i:

r̂j(k) =
ajr̂i(k) + bj

cjr̂i(k) + dj

where aj = (1 − γj)yi + (1 − γ1 − γ2)xj, bj = (γ1 + γ2 − 1)xj, cj = aj − γiyj, and dj = bj + γiyj.

In what follows, we analyze a number of properties of r̂j as a function of r̂i, and, in the interest

of simpler notation, we denote the recall probability of k for any individual j as r̂j. For r̂i = 1,

r̂j = 1, and for r̂i = 0, r̂j = bj/dj. Next, r̂j = 0 if r̂i =− bj
aj

; r̂j has a vertical asymptote at r̂i =− dj
cj

and

a horizontal asymptote at r̂i =
aj
cj

. Furthermore, r̂j is increasing in r̂i, that is, r̂′j =
γi(1−γj)y1y2

(cj r̂i(k)+dj)2 ≥ 0.

The second-order derivative of r̂j w.r.t. r̂i then is given by r̂
′′
j =−2γi(1− γj)y1y2

cj

(cj r̂i(k)+dj)3 . Hence,

r̂j is concave if cj

(cj r̂i(k)+dj)3 > 0 and convex otherwise. At this point, it is useful to study the sign of

cj. In particular,

cj = (1 − γj)yi − γiyj + (1 − γ1 − γ2)xj

= (1 − γj)(γizi + (1 − γi)zj)− γi(γjzj + (1 − γj)zi) + (1 − γ1 − γ2)xj

= (1 − γ1 − γ2)(xj + zj)

(A.5)

where the second equality follows from equation (9) in Section 2.3. Therefore, cj ⪌ 0 iff γ1 +γ2 ⪋ 1.

We consider two cases: i) γ1 + γ2 < 1 and ii) γ1 + γ2 > 1.

i) γ1 + γ2 < 1. In this case, cj > 0 and thus aj > cj > 0, so the horizontal asymptote is higher

than 1. Furthermore, the intersection of rj with the x-axis occurs at 0 <−bj/aj < 1, and the vertical

asymptote −dj/cj <−bj/aj. For r̂i <−dj/cj, it has to be that r̂j > 1 since the horizontal asymptote

is higher than 1. To ensure that the function is continuous for any r̂i ∈ [0,1], we assume that the

vertical asymptote occurs for r̂i < 0, implying that dj > 0, that is, (1 − γ1 − γ2)xj > γiyj. It is then
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easy to see that r̂j is concave for any r̂i ∈ [0,1]. Given that r̂j is negative for any ri ∈ [0,−bj/aj), the

function describing r̂j is given by

r̂j = max
[

0,
ajr̂i + bj

cjr̂i + dj

]

Equilibria. With a similar analysis, one can show that r̂i = max
[
0, ai r̂j+bi

ci r̂j+di

]
. Eventually, r̂∗i = r̂∗j =

1 is an equilibrium. Given the max operator, r̂∗i = r̂∗j = 0 is also an equilibrium. For other equilibria,

we have to search for the intersection between r̂j and r̂i when r̂i ∈ [−bj/aj,1) and r̂j ∈ [−bi/ai,1).

Substituting for r̂i into r̂j, we have that an equilibrium occurs whenever

f (r̂j) = φ2r̂2
j + φ1r̂j + φ0 = 0

where φ2 = cjai + djci ≥ 0, φ1 = cjbi + didj − bjci − ajai ≤ 0, and φ0 = −bjdi − ajbi ≥ 0. It follows

that f is a convex function, f (0) > 0, and f (1) = 0. Furthermore, f reaches its minimum value

for r̂j = −φ1/(2φ2) < 1, so f = 0 for some r̂∗j ∈ (0,−φ1/(2φ2)). It is straightforward to see that

f (−bj/aj) > 0, implying that r̂∗j ≥ −bj/aj. So, in the case when γ1 + γ2 < 1, there exist three

equilibria: (r̂∗i , r̂∗j ) = {(0,0), (1,1), (r̂∗∗i , r̂∗∗j )}, where r̂∗∗i , r̂∗∗j ∈ (−bj/aj,−φ1/(2φ2)).

ii) γ1 + γ2 > 1. In this case, the vertical asymptote, −dj/cj is higher than 1. Furthermore, the

intersection of r̂j with the y-axis occurs at 0 < bj/dj < 1. To ensure that the function is continuous

for any r̂i ∈ [0,1], we assume that the horizontal asymptote occurs at some r̂j < 0, implying that

aj > 0, that is, (γ1 + γ2 − 1)xj > (1− γj)yi.22 It is then easy to see that r̂j is convex for any r̂i ∈ [0,1].

Given that r̂j is positive for any r̂i ∈ [0,1], the function describing r̂j is given by

r̂j = max
[

0,
ajr̂i + bj

cjr̂i + dj

]
=

ajr̂i + bj

cjr̂i + dj

Equilibria. One can similarly show that r̂i =
ai r̂j+bi
ci r̂j+di

. Differently from the case in i), r̂∗i = r̂∗j = 0

is not an equilibrium. Eventually, r̂∗i = r̂∗j = 1 is an equilibrium. The rest of the analysis is similar to

i), with the difference that f is a concave function with φ2 =≤ 0, φ1 = cjbi + didj − bjci − ajai ≥ 0,

and φ0 ≤ 0. To summarize, in the case when γ1 + γ2 > 1, there exist two equilibria: (r̂∗i , r̂∗j ) =

{(1,1), (r̂∗∗i , r̂∗∗j )}, where r̂∗∗i , r̂∗∗j ∈ (−bj/aj,−φ1/(2φ2)).

22Note that both assumptions we impose to guarantee well-behaved functions simply put upper bounds on the
similarity between hypothesis k and experiences that do not belong to the subset of experiences related to k.
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B The Reflection Problem

B.1 Baseline

Consider the following generic regression specification:

πe
t = α + βΩπe

t + εt

where πe
t =

[
πe

1t πe
2t ... πe

Nt

]′
embeds inflation expectations in county 1 through county N,

εt =

[
ε1t ... εNt

]′
denotes a set of county-specific i.i.d. shocks to inflation expectations such

that ε it ∼N (0,σ2
i ) for any i ∈ {1,2, ..., N}, α =

[
α1 ... αN

]′
denotes a vector of constants (county

fixed effects), β denotes a scalar, and Ω is an N × N matrix with 0-diagonal and with row elements

summing to 1. We re-write the equation above as

πe
t − π̄︸ ︷︷ ︸

yt

= β [Ω(πe
t − π̄)]︸ ︷︷ ︸

Ωyt

+εt

where π̄ =

[
π̄e

1 π̄e
2 ... π̄e

N

]′
. Note that yt = (I − βΩ)−1 εt = Mεt. Let β̂ be the OLS estimate of

β. Then,

β̂ = β +
[
(y′tΩ

′Ωyt)
−1(y′tΩεt)

]
= β +

[
(ε′t M

′Ω′ΩMεt)
−1(ε′t M

′Ωεt)
]

where

(ε′t M
′Ωεt) =

[
ε1t ε2t ... εNt

]


m11 m21 ... mN1

m12 0 ... mN2

... ... ... ...

m1N m2N ... mNN





0 ω12 ... ω1N

ω21 0 ... ω2N

... ... ... ...

ωN1 ωN2 ... 0





ε1t

ε2t

...

εNt



=

[
∑i m1iε it ∑i m2iε it ... ∑i mNiε it

]


∑i ̸=1 ω1iε it

∑i ̸=2 ω2iε it

...

∑i ̸=N ωNiε it


=

N

∑
j=1

(
∑
i ̸=1

ω(θji)mjiσ
2
i

)
̸= 0
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If β = 0, then yt = εt and β̂ =
[
(ε′tΩ

′Ωεt)−1(ε′tΩεt)
]
, where

(ε′tΩεt) =

[
ε1t ε2t ... εNt

]


0 ω12 ... ω1N

ω21 0 ... ω2N

... ... ... ...

ωN1 ωN2 ... 0





ε1t

ε2t

...

εNt


=

[
ε1t ε2t ... εNt

]


∑i ̸=1 ω1iε it

∑i ̸=2 ω2iε it

...

∑i ̸=N ωNiε it


= 0

with the final equality following from the fact that the error terms are uncorrelated across counties.

Therefore, if β = 0, the OLS estimate of it should also be equal to 0.

B.2 Time Fixed Effects

Now suppose the true data generating process is given by the more general regression specifica-

tion with time and county fixed effects:

πe
t = α + γtLN + βΩπe

t + εt (B.1)

where LN = 1N×1 is a vector of 1s of length N, γt is the time fixed effect, and all the other

variables are as defined in Appendix B.1. Let π̄N. =
1
T

[
∑T

t=1 πe
1t ∑T

t=1 πe
2t ... ∑T

t=1 πe
Nt

]′
, π̄.t =(

1
N ∑N

n=1 πe
nt

)
LN , and π̄.. =

(
1

NT ∑N
n=1 ∑T

t=1 πe
nt

)
LN . Then, following a strategy similar to Wallace

and Hussain (1969), we re-write the equation above as

πe
t − π̄.t − π̄N. + π̄..︸ ︷︷ ︸

yt

= β [Ω(πe
t − π̄.t − π̄N. + π̄..)]︸ ︷︷ ︸

Ωyt

+εt

Note that yt = (I − βΩ)−1 εt = Mεt. Let β̂ be the OLS estimate of β, and as shown in Appendix B.1,

β̂ = β +
[
(y′tΩ

′Ωyt)
−1(y′tΩεt)

]
= β +

[
(ε′t M

′Ω′ΩMεt)
−1(ε′t M

′Ωεt)
]

︸ ︷︷ ︸
bias

What is important to note from the equation above is that even if the econometrician appropriately

accounts for the time and county fixed effects (as in the true data generating process), the estimate

of β will suffer from a bias.23

In an alternative exercise, suppose that the true data generating process is given by the equa-

23See Lee and Yu (2010) as well for a detailed discussion on the biases that arise in spatial models with time and
individual fixed effects.
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tion in (B.2), but the econometrician does not account for time fixed effects, that is, one runs the

following regression instead:

πe
t − π̄N.︸ ︷︷ ︸

ŷt

= β [Ω(πe
t − π̄N.)]︸ ︷︷ ︸
Ωŷt

+ut (B.2)

where ut = εt + (I − βΩ)(π̄.t − π̄..) = εt + M−1(π̄.t − π̄..) = εt + M−1xt. Then, the OLS estimate

of β is given by

β̂ = β +
[
(u′

t M
′Ω′ΩMut)

−1(u′
t M

′Ωut)
]

︸ ︷︷ ︸
bias

= β +

[(
(εt + M−1xt)

′M′Ω′ΩM(εt + M−1xt)
)−1(

(εt + M−1xt)
′M′Ω(εt + M−1xt)

)]
︸ ︷︷ ︸

bias

= β +
[(

ε′t M
′Ω′ΩMεt + x′tΩ

′Ωxt
)−1

(
ε′t M

′Ωεt + x′tΩM−1xt

)]
︸ ︷︷ ︸

bias

where the third equality follows from the fact that xt must be uncorrelated with εt. Now the bias is

similar to what we identified in Appendix B.1, with the additional terms coming from the fact that

we are not accounting for time fixed effects. What this Appendix highlights is that, even if one

appropriately accounts for all fixed effects (time and county), the reflection problem still arises.

B.3 Time Fixed Effect with Constant Weights and Bias

Here, we explicitly show the OLS estimate of the network effect under different assumptions for

the weights matrix and demonstrate how the inclusion of the time fixed effect affects the results.

B.3.1 No Time Fixed Effect

We start with the basic problem

πe
t = βΩπe

t + εt (B.3)
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with

Ω =



0 ω12 ... ω1N

ω21 0 ... ω2N

... ... ... ...

ωN1 ωN2 ... 0


This setup captures the main estimated specification in the text.

Then, we have that

πe
t = (I − βΩ)−1 εt

and

βOLS =
[
(Ωπe

t )
′ (Ωπe

t )
]−1

(Ωπe
t )

′ πe
t

or

βOLS =

[(
Ω (I − βΩ)−1 εt

)′(
Ω (I − βΩ)−1 εt

)]−1(
Ω (I − βΩ)−1 εt

)′
πe

t

B.3.2 With Time Fixed Effect

We now define the matrix

P =



1
N

1
N ... 1

N

1
N

1
N ... 1

N

... ... ... ...

1
N

1
N ... 1

N


So the average expectation at each period of time is:

Pπe
t = βPΩπe

t + Pεt

So a regression with time fixed effects is equivalent to running a regression over this equation:

(I − P)πe
t = β (I − P)Ωπe

t + (I − P)εt

or

πe,TFE
t = β (Ω − PΩ)πe

t + εe,TFE
t (B.4)
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Then,

βOLS,TFE =
[
((Ω − PΩ)πe

t )
′ ((Ω − PΩ)πe

t )
]−1

((Ω − PΩ)πe
t )

′ πe,TFE
t

or

βOLS,TFE =
[
((Ω − PΩ)πe

t )
′ ((Ω − PΩ)πe

t )
]−1

(πe
t
′ (Ω − PΩ)′ (I − P)πe

t

Then,

βOLS,TFE =
[
πe

t
′ (Ω − PΩ)′ (Ω − PΩ)πe

t
]−1

πe
t
′ (Ω − PΩ)′ (I − P)πe

t

Special Case:

To build intuition and derive a closed-form expression for β, let’s assume an extreme case

where the network is constant and equal for everybody, where the weights are 1
N−1 , so

Ω =



0 1
N−1 ... 1

N−1

1
N−1 0 ... 1

N−1

... ... ... ...

1
N−1

1
N−1 ... 0


It is direct to show that PΩ = 1

N ∗ P, then (Ω − PΩ) = (Ω − P). Further, it is direct to show

that (I − P) = (1 − N) ∗ (Ω − P) or (I − P) = (1 − N) ∗ (Ω − PΩ). We replace this value in the

definition if βOLS,TFE:

βOLS,TFE =
[
πe

t
′ (Ω − PΩ)′ (Ω − PΩ)πe

t
]−1

πe
t
′ (Ω − PΩ)′ (I − P)πe

t

βOLS,TFE =
[
πe

t
′ (Ω − PΩ)′ (Ω − PΩ)πe

t
]−1

πe
t
′ (Ω − PΩ)′ (1 − N) ∗ (Ω − PΩ)πe

t

βOLS,TFE = (1 − N) ∗
[
πe

t
′ (Ω − PΩ)′ (Ω − PΩ)πe

t
]−1

πe
t
′ (Ω − PΩ)′ (Ω − PΩ)πe

t

Then,

βOLS,TFE = −(N − 1)

We can see that in this case, the βOLS,TFE is constant, negative and does not depend on the

actual value of β.
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The network structure in our case is not constant, so that case just works as a benchmark. To

explore the potential biases from the potential inclusion of the time fixed effect, we simulate data

and a network structure. The network structure will come from a Beta distribution with difference

parameters. In one case, the network will be built from drawing from a Beta(1,1) or a uniform dis-

tribution, second from a Beta(1,10) and third from a Beta(1,20), in which case the distribution will

be moving more to an extreme value distribution, with less common nodes. The data generating

process comes from the structure

πe
t = (I − βΩ)−1 εt

where εt =

[
ε1,t, ε2,t, ..., εN,t

]′
will have two forms, one where εI

t =

[
ε1t ... εNt

]′
denotes a set

of county-specific i.i.d. shocks to inflation expectations such that ε it ∼ N (0,σε2). In the other

case, we also have a case where there is a common time shock, so εT
t = εI

t + ut
⊗

1N,1, with

ut =

[
u1,u2, ...,uT

]′
, a Tx1 matrix that contains time shocks with ut ∼N (0,σ2

u). We use σε = 1 and

σu = 0.1, so σε
σu

is similar to what the variation in time fixed effects in the data look like compared to

the residuals on the data from that regression. We use β = 0.3, N = 300 and T = 100 and simulate

100 times, keeping the network constant. Figure 4 shows the results of the simulation without

time FE for each formation process of the network and Figure 5 shows the result with time FE.
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Figure 4: Regression Results without Fixed Effects

Note: The figure shows the results of the regression (B.3) of the data simulated as described in the text. The first row shows results

of simulations without a common time shock. The second row shows results of a simulation with a common time shock that is 0.1

the size of the individual shock and the last row shows results of a simulation with a common time shock that is 0.5 the size of the

individual shock. All regression do not include a time fixed effect.
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Figure 5: Regression Results with Fixed Effects

Note: The figure shows the results of the regression (B.4) of the data simulated as described in the text. The first row shows results

of simulations without a common time shock. The second row simulation with a common time shock that is 0.1 the size of the

individual shock and the last row shows results of a simulation with a common time shock that is 0.5 the size of the individual shock.

All regression include a time fixed effect.

We can see that, from the extreme case of complete homogeneity in the network, to the uni-

form distribution case, there are some similarities. When there is no time shock (top left panel in

both figures), the OLS without a fixed effect is positively biased, but not by much. In the case of

the time FE, there is a strong negative bias that leads the coefficient to negative values. This effect

is present in the uniform distribution case, regardless of whether there is a time common shock

or not. This effect is smaller when the distribution of the network changes. We can see that in the

case of the Beta(1,100) distribution, the bias is still negative, but very close to the true value. With

a time shock, the regression without a time fixed effect is biased and goes to 1.

These results speak directly to the results in Table 1. There is an important difference in the

estimates of Column (4) and Column (5). Both regressions have time fixed effects, but in Column

(5) we drop counties that are spatially close. By doing that, we are effectively moving the distri-

bution of shares closer to an extreme value of one, as we are inputting a zero share to a group of
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counties in the common network. In those cases, the regression with the time fixed effect results

in a less biased estimate, even when there is no aggregate time shock. Something similar happens

in Section 4.3, when we split the sample by demographics. Because of these issues, we use the

first OLS results to show the importance of the network, but the results in Section 5, where we use

an instrumental variable approach, using county and gender variation, will be the coefficient that

would help us to obtain the unbiased estimate.

C County-Level Evidence

At the county level, we find strong, consistent evidence for the importance of the social net-

work for the expectations formation process. We obtain these results from estimating variants of

the following equation:

πe
c,t = αc + γt + β ∑

k ̸=c
ωc,kπe

k,t + εc,t (C.1)

where πe
c,t denotes the average inflation expectations in county c in month t. Weights ωc,k capture

the linkages in the social network between county c and county k. αc denotes a county fixed effect,

γt denotes a time fixed effect. The coefficient β is our main coefficient of interest. It captures the

relationship between inflation expectations, πe
c,t, and inflation expectations in the social network,

∑k ̸=c ωc,kπe
k,t. All estimated specifications of equation C.1 cluster standard errors at the county

level.

Various combinations of the fixed effects, restricting the sample to counties with more than 10

observations, and weighting by the number of responses per period make up our specifications.

Table 5 lists the different specifications and associated estimates of β across its columns. Column

1 presents a baseline without county and time fixed effects. Column 5 includes county and time

fixed effects. It shows a positive relationship between local inflation expectations and inflation

expectations in counties connected through the social network. Specifically, a 10 percentage point

increase in network-weighted inflation expectations in other counties is statistically significantly

associated with an increase between 0.62 and 0.03 percentage points in a county’s inflation ex-

pectations. The ample range of the point estimate is explained by the fixed effects used and the

amount of variation that take out, when the network contains common nodes. These results show

that the expectations of others matter when individuals form expectations.
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Table 5: Network Effect at the County Level

(1) (2) (3) (4) (5) (6)
Expectations of Others 0.644*** 0.268*** 0.619*** 0.274*** 0.046** 0.032*

(0.019) (0.017) (0.019) (0.016) (0.018) (0.017)
Sample N>10 All N>10 All N>10 All
Weights Yes No Yes No Yes No
County FE No No No Yes Yes Yes
Time FE No No No No Yes Yes
Observations 29,465 74,534 29,268 74,488 29,268 74,488
R-squared 0.125 0.007 0.384 0.173 0.433 0.188

Note: The table shows the results of regression (C.1), where the dependent πe
c,t is the average inflation expectations

of a county c at time t. Columns (1), (3), and (5) uses only counties at times where they have at least 10 observations
(N > 10) and weights the regression by the number of responses in each period (Weights = Yes). Standard errors are
clustered at the county level.

Estimating all other specifications confirms this finding. Across specifications, beliefs in the

network turn out to matter when individuals form expectations.

D Empirical Implications for Stability

Given a one-time shock to the expectations in county n only, inflation expectations in county

n are given by πe
nt = αn + εnt. However, due to social ties, expectations in the other counties are

affected as well, which will in turn feed back to expectations, and so on. We describe the within-

network, within-period feedback process, initiated by a one-time εnt ̸= 0, as follows:

πe
t (0) = α + εt

πe
t (1) = α + βΩπe

t (0) = (I + βΩ)α + βΩεt

... = ...

πe
t (k) =

k

∑
κ=0

(βΩ)κα + (βΩ)kεt

(D.1)

and so on, where πe
t (k) denotes inflation expectations at the kth step of the feedback loop. We

visualize the steps of the feedback loop in the case of N = 3 and n = 1 in Figure 6.
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Figure 6: Feedback Loop

Note: The subplots visualize the feedback loop in the case of three counties, when there is a one-time shock to the inflation expectations

of county 1 only. Red ellipses denote counties that have been affected by ε1t, whereas black ellipses are counties that have not been

affected by ε1t. Red arrows indicate the flow of effects through the social network.

Therefore, county-level expectations will converge to

πe
t = lim

k→∞
πe

t (k) =


(I − βΩ)−1α if ρ(βΩ) < 1

±∞ otherwise
(D.2)

where ρ(βΩ) denotes the largest eigenvalue of βΩ in absolute value. From the Gershgorin circle

theorem, all the eigenvalues of Ω should lie within the unit circle; thus all eigenvalues of βΩ lie

within [−β, β].24 Furthermore, one can show that 1 is always an eigenvalue of Ω, implying that

24The Gershgorin circle theorem states that every eigenvalue of a matrix lies within at least a disc centered at
a diagonal element with radius equal to the sum of the off-diagonal elements (in absolute value) in the row of the
diagonal element. In our case, every diagonal element of Ω is equal to 0, and the sum of the off-diagonal elements in
each row is equal to 1.
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ρ(βΩ) =| β |.25 As a result, a one-time county-specific shock to inflation expectations cannot desta-

bilize inflation expectations in all the other counties if | β |< 1. By contrast, if | β |≥ 1, then inflation

expectations grow exponentially with every step of the feedback loop, converging to ±∞.

Finally, we perform a simple exercise to account for the uncertainty in the estimates of ρ1

and ρ2 reported in Column (6) of Table 4. Specifically, we simulate 100,000 draws of

ρ1

ρ2

 ∼

N


ρ̂1

ρ̂2

 ,

 σρ̂1 σρ̂1,ρ̂2

σρ̂2,ρ̂1 σρ̂2


, and ωii ∼N (ω̂ii,σω̂ii) and construct the distribution of β = ωiiρ1 +

(1 − ωii)ρ2 shown in Figure 7. We find no case of instability.

Figure 7: Distribution of β

Note: Histogram of β = ωiiρ1 + (1 − ωii)ρ2, constructed from 100,000 draws of
(

ρ1
ρ2

)
∼ N

((
ρ̂1
ρ̂2

)
,
(

σρ̂1 σρ̂1 ,ρ̂2
σρ̂2 ,ρ̂1 σρ̂2

))
, and ωii ∼

N (ω̂ii ,σω̂ii ), using point estimates and standard errors reported in Column (6) of Table 4. The dashed red line at β = 1 denotes the

threshold for instability.

25To do so, all one has to show is that the determinant of (Ω − I) is 0. Note that

det(Ω − I) = det



−1 ω12 ... ω1N
ω21 −1 ... ω2N
... ... ... ...

ωN1 ωN2 ... −1


 = det




0 ω12 ... ω1N
0 1 ... ω2N
... ... ... ...
0 ωN2 ... 1


 = 0

where the second equality follows from adding to the first column all the others.
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E Proofs

E.1 Proof of Proposition 1

We need to find conditions for which the difference r̂j(k) − rj(k) > 0. To simplify notation, let

∑i ω(θji)∑e∈Eh
i→j

Sj(e,k | θji) = âh
j for any h ∈ {k,K\k,O} and ∑i ω(θji)∑e∈Ei→j

Sj(e,k | θji) = âj =

âk
j + âK\k

j + âO
j . Similarly, let ∑e∈Eh

j
Sj(e,k) = ah

j for any h ∈ {k,K\k,O} and ∑e∈Ej
Sj(e,k) = aj =

ak
j + aK\k

j + aO
j .

r̂j(k)− rj(k) =
γj ∑e∈Ek

j
Sj(e,k) + (1 − γj)∑i ω(θji)∑e∈Ek

i→j
Sj(e,k | θji)

γj ∑u∈Ej
Sj(u,k) + (1 − γj)∑i ω(θji)∑u∈Ei→j

Sj(u,k | θji)
−

∑e∈Ek
j
Sj(e,k)

∑u∈Ej
Sj(u,k)

=
(1 − γj)

[
âk

j (ak
j + aK\k

j + aO
j )− ak

j (âk
j + âK\k

j + âO
j )
]

aj(γjaj + (1 − γj)âj)

=
(1 − γj)

[
âk

j (aK\k
j + aO

j )− ak
j (âK\k

j + âO
j )
]

aj(γjaj + (1 − γj)âj)

(E.1)

Hence, r̂j(k)− rj(k) > 0 if the numerator is positive, that is, if

âk
j (aK\k

j + aO
j )− ak

j (âK\k
j + âO

j ) > 0 ⇐⇒
âk

j

ak
j
>

âK\k
j + âO

j

aK\k
j + aO

j

(E.2)

After replacing terms, the right-hand-side inequality is identical to the one in (6).

E.2 Proof of Corollary 1

• If the social network only shares experiences that are similar to hypothesis k, then ∑i ω(θji)∑e∈EK\k
i→j

Sj(e,k |

θji) = ∑i ω(θji)∑e∈EO
i→j

Sj(e,k | θji) = 0, whereas ∑i ω(θji)∑e∈Ek
i→j

Sj(e,k | θji) ̸= 0. As a conse-

quence, the condition in (6) always applies.

• If the social network only shares experiences that are not similar to hypothesis k, then ∑i ω(θji)∑e∈Ek
i→j

Sj(e,k |

θji) = 0, whereas ∑i ω(θji)∑e∈EK\k
i→j

Sj(e,k | θji) and ∑i ω(θji)∑e∈EO
i→j

Sj(e,k | θji) ̸= 0. As a con-

sequence, the condition in (6) is always violated.
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E.3 Proof of Proposition 2

To find out the effect of γj on the recall probability, we compute the first-order derivative of r̂j(k)

with respect to γj, while preserving the same notation as in the proof of Proposition E.1.

∂r̂j(k)
∂γj

=
(ak

j − âk
j )(γjaj + (1 − γj)âj)− (aj − âj)(γjaj + (1 − γj)âj)

(γjaj + (1 − γj)âj)2

= −
âk

j (aK\k
j + aO

j )− ak
j (âK\k

j + âO
j )

(γjaj + (1 − γj)âj)2

=


(+) if relative relevance < relative irrelevance

(−) if relative relevance > relative irrelevance

(E.3)

As the attention that individual j allocates to the experiences shared by her social network in-

creases, that is, as γj declines, the recall probability of events related to hypothesis k is amplified

if it is already higher than the recall probability of events related to hypothesis k under no social

interaction.

E.4 Proof of Proposition 6

To see the effect that a change in one of the weights, we re-write the condition in (6) as a difference,

that is, ∆j(k) = relative relevance− relative irrelevance. We assume that the weight assigned to ex-

periences shared by individual l, ωl j, changes, and given that ∑i ̸=j ω(θji) = 1, at least one other

weight has to change in the opposite direction for the constraint to hold. For simplicity and with-

out loss of generality, we assume that the weight assigned to experiences shared by individual q,

ωqj, changes.26

We then take the first-order derivative of ∆j(k) with respect to ωl j:

∂∆j(k)
∂ω(θji)

=
∑e∈Ek

l→j
Sj(e,k | θji)− ∑e∈Ek

q→j
Sj(e,k | θji)

∑e∈Ek
j
Sj(e,k)

−
∑e∈EK\k

l→j
Sj(e,k | θji) + ∑e∈EO

l→j
Sj(e,k | θji)− ∑e∈EK\k

q→j
−∑e∈EO

q→j
Sj(e,k | θji)

∑e∈EK\k
j

Sj(e,k) + ∑e∈EO
j

Sj(e,k)

(E.4)

Then, ∂∆j(k)
∂ω(θji)

> 0 if

∑e∈Ek
l→j

Sj(e,k | θji)− ∑e∈Ek
q→j

Sj(e,k | θji)

∑e∈Ek
j
Sj(e,k)

>
∑e∈EK\k

l→j
Sj(e,k | θji) + ∑e∈EO

l→j
Sj(e,k | θji)− ∑e∈EK\k

q→j
−∑e∈EO

q→j
Sj(e,k | θji)

∑e∈EK\k
j

Sj(e,k) + ∑e∈EO
j

Sj(e,k)

26The main takeaway of Proposition 6 would not change if we assumed that other weights changed as well in
response to the change in ωl j.
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E.5 Proof of Proposition 4

Recall that r̂2(k) = f (r̂1(k)) = max
[
0, a2 r̂1(k)+b2

c2 r̂1(k)+d2

]
and r̂1(k) = max

[
a1 r̂2(k)+b1
c1 r̂2(k)+d1

]
. From the latter, we

can isolate r̂2(k) and write it as a function of r̂1(k), that is, r̂2(k) = g(r̂1(k)) =
−d1 r̂1(k)+b1
c1 r̂1(k)−a1

. The goal is

then to figure out whether f (r̂1(k)) is higher/lower than g(r̂1(k)) for r̂1(k)> r̂1(k)∗∗, r̂2(k)> r̂2(k)∗∗

and r̂1(k) < r̂1(k)∗∗, r̂2(k) < r̂2(k)∗∗. We consider the two cases: i) γ1 + γ2 < 1 and ii) γ1 + γ2 > 1.

i) γ1 + γ2 < 1. Given the assumption in Appendix A.3, one can show that g(r̂1(k)) is a convex

function, intersecting the y-axis at −b1/a1 > 0. As shown in Appendix A.3, f (r̂1(k)) is a concave

function intersecting the x-axis at −b2/a2 > 0, and f (.) and g(.) meet each other at r̂1(k) = r̂2(k) = 1

and (r̂1(k), r̂2(k)) = (r̂1(k)∗∗, r̂2(k)∗∗), where −b2/a2 < r̂1(k)∗∗ < 1 and −b1/a1 < r̂2(k)∗∗ < 1. As a

result, it must be that f ⋛ g for any r̂1(k)⋛ r̂1(k)∗∗, r̂2 ⋛ r̂2(k)∗∗. This implies that any perturbation

to r̂1(k)∗∗, however small, will trigger larger and larger deviations of recall probabilities from the

equilibrium (see Figure 2, panel (b) for visualization).

ii) γ1 + γ2 > 1. Given the assumptions in Appendix A.3, one can show that g(r̂1(k)) is a con-

cave function, intersecting the x-axis at b1/d1 > 0. As shown in Appendix A.3, f (r̂1(k)) is convex

intersecting the y-axis at b2/d2 > 0, and f (.) and g(.) meet each other at r̂1(k) = r̂2(k) = 1 and

(r̂1(k), r̂2(k)) = (r̂∗∗1 , r̂∗∗2 ), where b1/d1 < r̂∗∗1 < 1 and b2/d2 < r̂∗∗2 (k)< 1. As a result, it must be that

g ⋛ f for any r̂1(k) ⋛ r̂1(k)∗∗, r̂2 ⋛ r̂2(k)∗∗. This implies that any perturbation to r̂1(k)∗∗ will force

recall probabilities back to the equilibrium (see Figure 2, panel (a) for visualization).

E.6 Proof of Proposition 5

The mean of the perceived probability of high inflation is given by

E
(

pj(H)
)
= E

(
Rj(H)

Rj(H) + Rj(L)

)

By the central limit theorem, we have that

zH
j =

Rj(H)− Tjrj(H)√
Tj

∼ N(0,rj(H)(1 − rj(H))

Therefore,
Rj(H)

Rj(H) + Rj(L)
=

zH
j /
√

Tj + rj(H)

zH
j /
√

Tj + rj(H) + zL
j /
√

Tj + rj(L)

and

lim
Tj→∞

Rj(H)

Rj(H) + Rj(L)
= lim

Tj→∞
pj(H) =

rj(H)

rj(H) + rj(L)
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Similarly, when there is social interaction, the probability of hypothesis H converges to r̂j(H)

r̂j(H)+r̂j(L) .

Therefore, if social interaction amplifies the recall probability of the high inflation regime, that is,

if r̂j(H) > rj(H), then social connectedness will increase the perceived probability that regime H

will realize.

F Additional Figures

F.1 Social Connectedness: Other Examples

In the body of the text, we presented the connections of counties to Cleveland. Here, we provide

the social Connectedness to Cleveland and three other illustrative examples: Cambridge, Miami,

and Los Angeles. We observe similar patterns.

Figure 8: Social Connectedness of Each County to Cleveland (ωc,Cleveland)

Social Connectedness to Cleveland

Source: Facebook SCI Weights
0 500 1000 1500 km

N

From 0 to 1
0.00002 to 0.00005
0.00005 to 0.00007
0.00007 to 0.00008
0.00008 to 0.00010
0.00010 to 0.00013
0.00013 to 0.00016
0.00016 to 0.00019
0.00019 to 0.00025
0.00025 to 0.00037
0.00037 to 0.10662

Cuyahoga County 
(Cleveland)

Note: The yellow-to-red color scale represents the degree to which counties are socially connected to Cleveland, based on ωc,Cleveland.

Red indicates higher ωc,Cleveland. Source: Social Connectedness Index

61



Figure 9: Social Connectedness of Each County to Cambridge (ωc,Cambridge)

  Cambridge

Source: Facebook SCI Weights
0 500 1000 1500 km

N

From 0 to 1
0.00003 to 0.00006
0.00006 to 0.00007
0.00007 to 0.00008
0.00008 to 0.00009
0.00009 to 0.00010
0.00010 to 0.00012
0.00012 to 0.00016
0.00016 to 0.00023
0.00023 to 0.00041
0.00041 to 0.06224

Note: The yellow-to-red color scale represents the degree to which counties are socially connected to Cambridge, based on ωc,Cambridge.

Red indicates higher ωc,Cambridge. Source: Social Connectedness Index
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Figure 10: Social Connectedness of Each County to Miami (ωc,Miami)

Social Connectedness to Miami

Source: Facebook SCI Weights
0 500 1000 1500 km

N

From 0 to 1
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Note: The yellow-to-red color scale represents the degree to which counties are socially connected to Miami, based on ωc,Miami . Red

indicates higher ωc,Miami . Source: Social Connectedness Index
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Figure 11: Social Connectedness of Each County to Los Angeles (ωc,LA)

Facebook SCI Weights

Source: Facebook Social Connectedness Weights
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Note: The yellow-to-red color scale represents the degree to which counties are socially connected to Los Angeles, based on ωc,LA.

Red indicates higher ωc,LA. Source: Social Connectedness Index
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F.2 Other Figures

Figure 12: Correlation between SCI and Own Car Commuting Shares
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Note: The figure shows results of regressions where the dependant variables are the weights in a given county and the independent

variable is the share of households that use their own car to commute. The blue dots are the point estimates and the grey lines

represent 99 percent condifent intervals.

G Other Tables

First, we explore whether our main results are explained by proximity in space. In Table 6 we

repeat our main analysis excluding nearby counties from the network. We find that even infla-

tion expectations from distant locations are an important determinant of an individual’s inflation

expectations. In particular, the main coefficient increases compared to the benchmark estimate.

In Appendix B.3 we show that incorporating time fixed effects can introduce a bias that attenu-

ates the coefficient, particularly in scenarios characterized by a homogeneous network structure.
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Hence, the increase in the main coefficient is consistent with the fact that when we exclude in-

flation expectations in nearby counties, we induce greater heterogeneity in the network, which

reduces this attenuation bias.27

Table 6: Effect of Removing Close Counties on Inflation Expectations
(1) (2) (3) (4) (5) (6)

Expectations of Others 0.282*** 0.352** 0.280*** 0.281** 0.281*** 0.291**
(0.089) (0.149) (0.090) (0.130) (0.089) (0.130)

County Expectations 0.590*** 0.554*** 0.591*** 0.556*** 0.591*** 0.556***
(0.065) (0.047) (0.066) (0.048) (0.065) (0.048)

Distance >200m >200m >250m >250m >300m >300m
County FE Yes Yes Yes Yes Yes Yes
Time FE No Yes No Yes No Yes
Observations 1,926,635 1,926,635 1,926,635 1,926,635 1,926,635 1,926,635
R-squared 0.017 0.017 0.017 0.017 0.017 0.017

Note: The table shows the results of regression (16), where the dependent πe
i,c,t is the inflation expectations of individual i who

answers from county c at time t. Regressions are weighted by the number of responses in a county in each period. We build a network
excluding counties that are less than a certain amount of miles from the individual’s county. Standard errors are clustered at the
county level.

Table 7: Effect with Demographic Controls
(1) (2) (3) (4) (5)

Expectations of Others 0.252*** 0.266*** 0.051*** 0.068*** 0.058***
(0.074) (0.076) (0.017) (0.019) (0.020)

County Expectations 0.603*** 0.575*** 0.557*** 0.542*** 0.469***
(0.058) (0.053) (0.049) (0.051) (0.019)

County FE Yes Yes Yes Yes Yes
Time FE No No Yes Yes Yes
Demografics FE No Yes No Yes Yes
Dem-Time FE No No No No Yes
Observations 1,926,282 1,925,393 1,926,282 1,925,393 1,925,393
R-squared 0.017 0.033 0.017 0.033 0.036

27The result is tied to the following intuition: Inclusion of a time fixed effect is equivalent to filtering out average
inflation expectations of respondents, which is similar to estimating a network coefficient, only with different weights.
By removing nearby counties from the data underlying the estimation of the second coefficient, we are making the
two fixed effects dissimilar. It then turns out that this change can reduce the attenuation bias in the coefficient on
expectations in the social network.
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Table 8: County Demographic Controls

Sh Foreign PC Income Sh Black Sh Hisp Sh White NH Pov Rate Biden Sh
Exp of Others 0.337*** 0.326*** 0.234*** 0.288*** 0.097*** 0.243*** 0.331***

(0.032) (0.062) (0.055) (0.064) (0.024) (0.032) (0.427)
County Exp 0.555*** 0.551*** 0.583*** 0.564*** 0.565*** 0.564*** 0.555***

(0.036) (0.022) (0.048) (0.048) (0.054) (0.038) (0.285)
County FE Yes Yes Yes Yes Yes Yes Yes
Time FE Yes Yes Yes Yes Yes Yes Yes
Time-Dem FE Yes Yes Yes Yes Yes Yes Yes
Observations 1,926,282 1,926,282 1,926,282 1,926,282 1,926,282 1,926,276 1,920,803
R-squared 0.017 0.017 0.017 0.017 0.017 0.017 0.017

Table 9: Placebo
(1) (2) (3) (4) (5)

Placebo 0.231*** 0.046 0.351*** -0.036 -0.043
(0.061) (0.084) (0.076) (0.056) (0.055)

Expectations of Others 0.050**
(0.023)

County Expectations 0.712*** 0.687*** 0.546*** 0.497*** 0.497***
(0.051) (0.038) (0.053) (0.032) (0.032)

Time FE No Yes No Yes Yes
County FE No No Yes Yes Yes
Observations 1,277,247 1,277,247 1,277,247 1,277,247 1,277,247
R-squared 0.012 0.012 0.012 0.013 0.013
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Table 10: Network Effect by Political Affiliation

(1) (2) (3) (4) (5) (6)
Network − Politics 0.273*** 0.225*** 0.259*** 0.166*** 0.169*** 0.264***

(0.022) (0.041) (0.040) (0.031) (0.034) (0.051)
In f − County 0.646*** 0.631*** 0.575*** 0.558*** 0.514*** 0.333***

(0.032) (0.033) (0.031) (0.030) (0.023) (0.037)
County FE No No Yes Yes Yes Yes
Time FE No Yes No Yes Yes Yes
State-Time FE No No No No Yes No
County-Time FE No No No No No Yes
Observations 1,896,092 1,896,092 1,896,092 1,896,092 1,896,092 1,896,092
R-squared 0.022 0.023 0.023 0.023 0.024 0.025

Note: The table shows the results of regression (17), where the dependent variable πe
i,d,c,t is the inflation expectations of

individual i, with gender d, who answers from county c at time t.. The network is defined as all the answers that are for indi-

viduals from the same political affiliation in other counties. In f − County is the average of responses from respondents with

the same political affiliation in her/his own county. Respondents choose between Democrat, Republican, or Independent.

Regressions are weighted by the number of responses in a county in each period. Standard errors are clustered at the county

level.

Table 11: Network Effect by Income

(1) (2) (3) (4) (5) (6)
Network − Income 0.214*** 0.173*** 0.205*** 0.147*** 0.164*** 0.258***

(0.035) (0.030) (0.052) (0.036) (0.038) (0.069)
In f − Income 0.676*** 0.662*** 0.613*** 0.596*** 0.553*** 0.375***

(0.035) (0.034) (0.036) (0.032) (0.026) (0.049)
County FE No No Yes Yes Yes Yes
Time FE No Yes No Yes Yes Yes
State-Time FE No No No No Yes No
County-Time FE No No No No No Yes
Observations 1,899,700 1,899,700 1,899,700 1,899,700 1,899,700 1,899,700
R-squared 0.024 0.024 0.025 0.025 0.025 0.027

Note: The table shows the results of regression (17), where the dependent variable πe
i,d,c,t is the inflation expectations of

individual i, with gender d, who answers from county c at time t.. The network is defined as all the answers that are for

individuals from the same income bracket in other counties. In f − Income is the average of responses from respondents

in the same income bracket in her/his own county. Respondents choose between less than 50k, 50-100k, and more than

100k annual income. Regressions are weighted by the number of responses in a county in each period. Standard errors are

clustered at the county level.
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Table 12: Network Effect by Age

(1) (2) (3) (4) (5) (6)
Network − Age 0.291*** 0.302*** 0.292*** 0.306*** 0.429*** 0.306***

(0.020) (0.026) (0.032) (0.030) (0.041) (0.030)
In f − Age 0.643*** 0.633*** 0.593*** 0.585*** 0.447*** 0.585***

(0.038) (0.031) (0.037) (0.030) (0.035) (0.030)
County FE No No Yes Yes Yes Yes
Time FE No Yes No Yes Yes Yes
State-Time FE No No No No Yes No
County-Time FE No No No No No Yes
Observations 1,883,123 1,883,123 1,883,123 1,883,123 1,883,123 1,883,123
R-squared 0.032 0.032 0.032 0.032 0.035 0.032

Note: The table shows the results of regression (17), where the dependent variable πe
i,d,c,t is the inflation expectations of

individual i, with gender d, who answers from county c at time t.. The network is defined as all the answers that are for

individuals from the same age group in other counties. In f − Age is the average of responses from respondents with the

same age group in her/his own county. Respondents choose between 18-34, 35-44, 45-64, and more than 65 years old.

Regressions are weighted by the number of responses in a county in each period. Standard errors are clustered at the

county level.
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Table 13: Similarity Effects by Other Demographic Characteristics

(1) (2) (3) (4) (5) (6)
Network-Age 0.316*** 0.363*** 0.465***

(0.035) (0.031) (0.039)
County-Age 0.585*** 0.514*** 0.413***

(0.032) (0.026) (0.032)
Network-Income 0.149*** 0.138** 0.242***

(0.035) (0.054) (0.075)
County-Income 0.608*** 0.506*** 0.325***

(0.020) (0.018) (0.029)
Network-Politics 0.179*** 0.141*** 0.235***

(0.036) (0.035) (0.045)
County-Politics 0.551*** 0.451*** 0.281***

(0.014) (0.015) (0.020)
Network-Gender 0.377*** 0.366*** 0.739***

(0.041) (0.052) (0.091)
County-Gender 0.610*** 0.497*** (0.151)

(0.019) (0.018) (0.036)
Network -0.158*** -0.077** -0.079*** -0.250*** -0.702***

(0.020) (0.038) (0.024) (0.038) (0.041)
County -0.009 -0.036 -0.021 -0.043 -1.377***

(0.036) (0.039) (0.039) (0.036) (0.030)
County FE Yes Yes Yes Yes Yes Yes
Time FE Yes Yes Yes Yes Yes Yes
County-Time FE No No No No no Yes
Observations 1,883,123 1,899,700 1,896,092 1,910,679 1,850,340 1,848,409
R-squared 0.031 0.025 0.023 0.027 0.050 0.045

Note: The table shows the results of regression (17), where the dependent variable πe
i,d,c,t denotes the inflation expectations

of individual i of gender d in county c at time t. Network is defined as the average of inflation expectations of individuals

from the same demographic group in other counties. County denotes the average in the own county. Network and county

combinations of demographic categories denote the averages conditional on other individuals belonging to the same de-

mographic categories. Regressions are weighted by the number of responses in a county in each period. Standard errors

are clustered at the county level.

70



Table 14: Similarity and Dissimilarity Effect by Gender

(1) (2) (3) (4) (5) (6)
Similarity-Network 0.303*** 0.285*** 0.325*** 0.211*** 0.512*** 0.460***

(0.036) (0.021) (0.054) (0.022) (0.108) (0.088)
Dissimilarity-Network -0.086*** -0.106** -0.004 -0.153*** 0.052 -0.002

(0.026) (0.040) (0.031) (0.031) (0.154) (0.136)
Similarity-County 0.675*** 0.662*** 0.602*** 0.578*** 0.558*** 0.560***

(0.035) (0.030) (0.040) (0.033) (0.033) (0.035)
Dissimilarity-County 0.037*** 0.029** -0.032*** -0.051*** -0.038*** -0.036***

(0.012) (0.013) (0.011) (0.008) (0.006) (0.006)
County FE No No Yes Yes Yes Yes
Time FE No Yes No Yes Yes Yes
Counties All All All All >200m >250m
Observations 1,858,010 1,858,010 1,858,010 1,858,010 1,858,010 1,858,010
R-squared 0.026 0.026 0.026 0.026 0.027 0.027

Note: The table shows the results of regression (17), where the dependent variable πe
i,d,c,t denotes the inflation expectations of

individual i of gender d in county c at time t. Similarity − Network denotes the average of inflation expectations of individuals

of the same gender in other counties. Dissimilarity − Network denotes the average of inflation expectations of individuals of the

opposite gender in other counties. Similarity − County denotes the average of inflation expectations of respondents of the same

gender within her/his own county. Dissimilarity − County denotes the average of inflation expectations of respondents of the

opposite gender within her/his own county. Column (5) shows regression where the network is built removing counties that

are closer than 200 miles and Column (6) removing counties closer than 250 miles. Regressions are weighted by the number of

responses in a county in each period. Standard errors are clustered at the county level.
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Table 15: Similarity Effects by Other Demographic Characteristics

Age Income Politics Gender
(1) (2) (3) (4)

Network-Dem 0.006 0.025** 0.031* 0.030**
(0.011) (0.013) (0.017) (0.014)

Own County Dem 0.574*** 0.559*** 0.566*** 0.549***
(0.018) (0.021) (0.025) (0.025)

County FE Yes Yes Yes Yes
Time FE Yes Yes Yes Yes
Dem-Time FE Yes Yes Yes Yes
Observations 1,883,123 1,899,700 1,330,360 1,910,679
R-squared 0.039 0.027 0.024 0.029

Note: The table shows the results of regression (17), where the dependent variable πe
i,d,c,t

denotes the inflation expectations of individual i of gender d in county c at time t. Network

is defined as the average of inflation expectations of individuals from the same demographic

group in other counties. County denotes the average in the own county. Network and county

combinations of demographic categories denote the averages conditional on other individ-

uals belonging to the same demographic categories. Regressions are weighted by the mini-

mum number of responses by gender in a county in each period. Standard errors are clus-

tered at the county level.
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Table 16: Exogenous Variation and Network Effect

(1) (2) (3) (4) (5)
∑k ̸=c ωc,kGas_e f f ectc,t 1.771***

(1.248)
∑k ̸=c ωc,kGas_e f f ectc,d,t 2.196* 0.727

(1.126) (0.948)
∑k ̸=c ωc,kπe

d,k,t 0.972*** 1.173***
(0.126) (0.122)

Gas_e f f ectc,t 2.091* 2.107* 0.220 3.192*** 3.145***
(1.187) (1.203) (1.106) (0.396) (0.387)

Sample All Men Female All All
Time FE No Yes Yes Yes Yes
County FE Yes No Yes Yes Yes
Regression OLS OLS OLS OLS IV
F-Test - - - - 179.8
Observations 1,239,680 606,305 632,750 1,239,055 1,239,055
R-squared 0.014 0.014 0.014 0.020 0.006

Note: This table shows results from estimating two specifications. First, πe
i,c,t = αc + γt + β1Gas_e f f ectc,t +

β2 ∑k ̸=c ωc,kGas_e f f ectd,k,t + εi,d,c,t, and second, πe
i,d,c,t = αc + γt + β1Gas_e f f ectc,t + β2 ∑k ̸=c ωc,kπe

d,k,t + εi,t,

where πe
i,d,c,t denotes the inflation expectations of individual i, of gender d, in county c, at time t; Gas_e f f ectc,t

denotes the gas effect variable constructed as described in the text of county c at time t; πe
d,k,t gender d inflation

expectations in county k at time t; Gas_e f f ectd,k,t denotes the gas effect variable constructed as described in

the text; and αc and γt are county and time fixed effects. Column (6) use as instrument ∑k ̸=c ωc,kGas_e f f ectd,k,t

for ∑k ̸=c ωc,kπe
d,k,t Regressions are weighted by the number of responses in a county in each period. Standard

errors are clustered at the county level
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