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Abstract

How do social networks affect inflation expectations? In a model of memory and re-
call, we analytically show conditions under which social networks amplify inflation
expectations as well as necessary conditions for belief stability. In particular, sharing
salient experiences or sharing experiences among similar individuals can intensify
amplification. Using a novel dataset that integrates information on inflation expec-
tations with social network connections, our empirical analysis reveals several key
findings in line with the model predictions: Inflation expectations within one’s social
network are positively associated with individual inflation expectations. This rela-
tionship is stronger for groups that share common demographic characteristics such
as gender, income, or political affiliation. An instrumental variable approach further
establishes causality of these results while also showing that salient information dis-
seminates strongly through the network. Our estimates imply that the influence of
the social network amplifies but does not destabilize inflation expectations.
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1 Introduction
A growing body of literature is investigating how consumers form inflation expecta-

tions, and how these expectations matter for individual economic decisions and macroe-
conomic dynamics.1 In this context, a central finding goes back to the behavioral work
of Tversky and Kahneman (1973): Consumers may rely on availability heuristics to form
expectations whereby events that are more salient or easier to recall are more likely than
others.2 However, a central insight from social psychology, pioneered by Festinger (1954),
is usually not considered in the inflation expectations literature: The formation of infla-
tion expectations takes place in a social context while we interact with others. We weave
this insight back into a behavioral model of expectations formation, and empirically show
that social networks indeed matter for the formation of inflation expectations.

In particular, our paper makes three contributions. First, we extend the memory and
recall model of Bordalo et al. (2023) to allow for experiences that are shared through one’s
social network, and use the model as a laboratory to generate several testable implica-
tions for the role of social networks on individual expectations. Second, by merging infla-
tion expectations with social network connections we create a novel dataset that is dense
enough to facilitate an analysis of inflation expectations in a social network context. Third,
we implement several empirical strategies to rigorously isolate the causal effect that the
social network has on individual inflation expectations. Our empirical analysis provides
strong evidence for the model’s predictions: Inflation expectations of the social network
are significantly and positively associated with individual inflation expectations. This
relationship is stronger for groups that share common demographic characteristics such
as gender, income, or political affiliation. Additionally, implementing an instrumental
variable approach establishes causality of these results while also showing that salient
information transmits strongly through the network. Finally, our estimates imply that the
social network does not destabilize inflation expectations.

Our paper incorporates the role of social networks into the memory and recall model
of Bordalo et al. (2023). In this framework, subjective probability assessments of events
like “high inflation” – and hence, high inflation expectations – rise when such hypotheses
are more similar to episodes in an individual’s memory. Our extension explicitly allows

1See, for instance, for individual decisions Coibion et al. (2019a), Coibion et al. (2019b), and Hajdini et
al. (2022b). For macro implications, see Coibion and Gorodnichenko (2015a), Gabaix (2020), Kohlhas and
Walther (2021), and L’Huillier et al. (2021), among many others.

2See, for example, Carroll (2003). Moreover, recent work by da Silveira and Woodford (2019) and
Bordalo et al. (2023) has focused on understanding the role of memory in belief formation. Implications of
memory and its limits on economic behavior have also been studied in Dow (1991), Mullainathan (2002),
and Gennaioli and Shleifer (2010), among others. Gas prices constitute an example of a well-known salient
price that affects consumer inflation expectations, as for example recently shown in D’Acunto et al. (2021b).
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an individual’s memory to incorporate episodes retrievable from their social network and
thus, affect their probability assessments and expectations. Moreover, similarity between
a hypothesis and such shared experiences may now positively depend on common demo-
graphic characteristics among friends, embodying the possibility that experiences shared
by similar friends can be perceived as more relevant to a probability assessment.

Several directly testable implications emerge in this setup. First, an individual’s in-
flation expectations are positively influenced by those of others in her social network
if the individual pays attention to shared experiences. Second, the influence of the so-
cial network on inflation expectations is stronger among individuals who share common
demographics, provided that these similarities tend to provide subjectively more rele-
vant information. Third, idiosyncratic shocks to inflation expectations that are shared
through one’s social network are more likely to destabilize individual inflation expecta-
tions when sharing them increases their subjective relevance for probability assessments.
For instance, instability can occur if a person perceives the shared experience to be more
salient for “high inflation” than if it were their own. Such a stability condition appears
intuitive in our social network setup but perhaps less so in statistical models of social
learning like DeGroot (1974).

Empirically, pinning down the causal effects of social networks on individual infla-
tion expectations is challenging. First, the analysis necessitates a dataset that combines
geographically dense data on individuals inflation expectations with a map of the social
network. Second, when “other factors,” such as aggregate or local shocks, are sufficiently
common across locations, they may spuriously create co-movement in individual infla-
tion expectations and inflation expectations of others. Examples of such “other factors”
include common trade or retail networks, or homophily in social networks, both of which
can make specific shocks common to groups of individuals and induce co-movement in
their expectations.

Our analysis overcomes these challenges in various ways. To address the first chal-
lenge, we have constructed a novel dataset that contains inflation expectations and social
networks. For consumer inflation expectations, we use data from the Indirect Consumer
Inflation Expectations (ICIE) survey, which not only captures individual inflation expec-
tations but also provides detailed geographic and demographic information about the
respondents.3 Social connections at the county level are derived from the Social Con-
nectedness Index Database (SCI), initially introduced by Bailey et al. (2018a). The SCI
measures the social connectedness between different counties of the United States as of
April 2016, based on Facebook friendship connections. Analysing this data at a monthly

3The survey is nationally representative of the US. See Hajdini et al. (2022a) for details.
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frequency and at the county level yields sufficiently thick data for our purpose, with over
1.9 million observations from March 2021 to July 2023.

Central to our empirical analysis is exploiting these data to construct a monthly mea-
sure of inflation expectations of others to whom we are connected via the social network:
Thanks to the thickness of our data, we can compute average inflation expectations for
each U.S. county. Then, we construct expectations of others relevant for an individual
in a given county by taking a weighted average of these average expectations in other
counties. In this calculation, the SCI weights used are proper to each county and give
greater importance to other counties that are more strongly connected through the social
network to an individual’s own county.

Given this novel dataset, our analysis deploys three strategies to show that social net-
works are an important channel for the formation of individual inflation expectations.
Each approach regresses individual inflation expectations on the inflation expectations of
others while accounting in different ways for “other factors” and endogeneity concerns.
Our first approach accounts for “other factors” directly, by including detailed fixed ef-
fects that capture any systematic unobserved county characteristics and time variation.
To rule out spurious transmission of common local shocks, a variant of this approach
excludes proximate counties, while other variants include controls interacted with time
fixed effects, such as individual demographic characteristics and county demographic
characteristics, as well as an explicit measure of price shocks transmitted through com-
mon retail networks. These variables aim to explicitly account for variation that stems,
for example, from the co-movement of prices in similar consumption baskets and may
induce common movements in the associated inflation expectations.

The second approach creates additional variation at the county level to remove vari-
ation in “other factors” at the county-time level that affects identification. Specifically,
we construct county × demographic × time inflation expectations of others that allow
us to include such county-time fixed effects. These county-time fixed effects absorb any
variability that equally affects all demographic groups in a county at a given time. They
alleviate concerns about, for instance, spatial spillovers, trade relationships, or demand
spillovers from nearby regions, among other confounding factors. Exploiting common-
demographic expectations of others additionally allows our analysis to identify the role
that shared demographics have on the transmission of inflation expectations through
one’s network.

Finally, we apply an instrumental variables approach that addresses any remaining
endogeneity concerns, including those implied by the Manski (1993) reflection problem.
The idea behind the instrument is simple: Gas prices are relevant for the formation of
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inflation expectations (Coibion and Gorodnichenko (2015b)) and such relevance varies
across cities, depending on the importance of gas usage, which is not related to the so-
cial network weights. The approach therefore exploits different commuting shares by car
across counties (and hence gas use) to obtain county-time specific exogenous shocks to
gas prices after filtering out any common time variation. Using these shocks as an in-
strument then allows one to estimate an unbiased effect of the expectations of others on
individual inflation expectations.4 Not least in their totality, these three approaches con-
tribute to the strength of identification. At the same time, they address different aspects
of the model predictions.

Across all approaches, our empirical findings consistently demonstrate the relevance
of social networks in shaping individual inflation expectations, highlighting the signifi-
cant impact of shared experiences within these networks: Inflation expectations of others
shared through the social network bear a positive, causal relationship with individual in-
flation expectations. Moreover, our empirical results align with predictions related to sim-
ilarity in our model, showing that the beliefs of demographically similar individuals ex-
ert a greater influence on inflation expectations than those from a more diverse network.
Viewed through the lens of the model, this finding implies a higher perceived relevance
of shared experiences within common-demographic networks. In terms of stability, our
analysis reveals that while the influence of others’ inflation expectations does not desta-
bilize individual expectations overall, the salience of shared experiences through social
networks can have a marginally destabilizing effect. This finding suggests that policy-
makers should focus on identifying and managing salient events that propagate strongly
through social networks to mitigate potential instabilities in inflation expectations.

Literature. The findings from our analysis are related to several strands of the litera-
ture. On one hand, there is extensive work aiming to understand how individuals form
social networks and learn from them, as for example in Banerjee (1992), Acemoglu et al.
(2011), and Golub and Sadler (2016).5 Another strand of the literature comprises recent
work in macroeconomics focused on the transmission of shocks through networks, such
as input-output linkages (see, for example, Baqaee and Farhi (2018), Rubbo (2020), Pasten
et al. (2020)). Our paper connects both strands of the literature, by considering a memory-

4Because the instrument embodies idiosyncratic local gas price experiences, any resulting relevance of
inflation expectations of others does not derive from simply speeding up learning about common shocks,
but truly from idiosyncratic experiences becoming available over the network.

5Other notable papers in the social learning literature in a network context include Ellison and
Fudenberg (1993), Mobius and Rosenblat (2014), Chandrasekhar et al. (2020), Board and Meyer-ter Vehn
(2021), and Elliott and Golub (2022). Other papers, such as Arifovic et al. (2013) and Grimaud et al. (2023),
among others, consider social learning in a New Keynesian framework, where agents either do not interact
with one another or their forecasts are assumed to converge towards the best-performing ones.
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based theoretical framework and showing that a key macroeconomic variable – inflation
expectations – is influenced by social interactions. Extending the network literature to the
context of inflation expectations paves the way for future research on questions central to
policymakers and modelers alike that for example relate to the existence of multiple equi-
libria, the role of super-nodes in communication, and the transmission of shocks from
different regions and of different sizes (as in Gabaix (2011)).

Our analysis is also related to a large behavioral literature in which many studies have
shown how individual characteristics and experiences affect the process of expectations
formation (for example, Malmendier and Nagel (2016), D’Acunto et al. (2021b), Kuchler
and Zafar (2019), Hajdini et al. (2022a)). The findings in these papers are related to a the-
oretical literature that argues that individuals use heuristics in the formation of beliefs.
This literature goes back most prominently to Kahneman and Tversky (1972). It has re-
cently been refined using the diagnostic expectation model (Bordalo et al. (2018), Bordalo
et al. (2019), and L’Huillier et al. (2021)), as well as through the idea of memory in the
expectations formation process (da Silveira and Woodford (2019), Bordalo et al. (2023)).
Relative to this literature, our paper emphasizes theoretically and empirically the role of
social interaction for further disciplining the formation of expectations.

Our analysis is also related to a growing empirical literature that studies the effects of
social interactions on economic decision-making. For example, in the context of housing,
Bailey et al. (2018b) find that individuals whose geographically distant friends experi-
enced larger house price increases are more likely to transition from renting to owning.
Using a survey for individuals in Los Angeles, Bailey et al. (2019) also show that the so-
cial network can affect house price expectations. Likewise emphasizing the role of social
networks, Burnside et al. (2016) use “social dynamics” to explain how there can be booms
and busts in the housing market. Housing is an important but also atypical, durable good
that is purchased at most a few times during one’s lifetime, and by contrast, our analysis
focuses on the entire consumption basket in the economy. Its broader scope makes expec-
tations about the future price of consumption a central macroeconomic variable not least
in the monetary policy context, especially in times of high inflation. The formal frame-
work of inflation expectations formation in the context of social networks that we provide
and validate may moreover help policymakers in understanding and exploiting behav-
ioral mechanisms for the benefit of macroeconomic stabilization goals and the optimal
design of central bank communication.

The remainder of the paper is organized as follows. Section 2 presents a model of in-
flation expectations and social networks. Section 3 presents the data. Section 4 presents
the main empirical results. Finally, Section 5 concludes.
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2 Theoretical Framework
This section outlines a model for the formation of inflation expectations in the presence

of social networks. The framework we propose extends the memory and recall model of
Bordalo et al. (2022) and Bordalo et al. (2023) by incorporating the feature of social inter-
action. We start off by describing a baseline setting in which individuals in the economy
do not socially interact (similar to Bordalo et al. (2022) and Bordalo et al. (2023)). We then
allow for individuals to socially interact and exchange experiences, deriving a number
of testable implications. The exposition of the framework concludes by delineating be-
lief stability conditions that embody an interaction of the social network and the salience
of the experiences shared through the network, enriching more statistical social learning
models as DeGroot (1974).

2.1 Baseline: No Social Interaction

Consider an individual j, who has stored a set of personal experiences in her memory
database Ei of size |Ei|. For simplicity, we split the set of experiences of j into three mu-
tually exclusive subsets containing high-inflation experiences, EH

i , low inflation experi-
ences, EL

i , and experiences that are irrelevant to high or low inflation experiences, EO
i . We

would like to assess the probability that individual j recalls experiences that are similar
to a particular hypothesis k ∈ K = {H, L}, where H denotes the hypothesis of high infla-
tion and L that of low inflation. To assess the probability of recall, we define a similarity
function between two events ui ∈ Ei and vi ∈ Ei, that is, Si(ui,vi) : Ei × Ei →

[
0 S̄i

]
, that

quantifies the similarity between individual i’s experience ui and vi. The similarity be-
tween any two experiences ui and vi increases in the number of shared features between
the two experiences, and the highest value of similarity, S̄i, is achieved when ui = vi. We
purposely abstract from providing a particular functional form for Si to warrant general-
ity of our results.6

Based on this setup, we define recall probabilities of experiences and link them to ex-
pectations as follows. First, assume that similarity between an experience ei and a subset
of experiences, A ⊂ Ei, is given by Si(ei, A) = ∑ui∈A

Si(ei,ui)
|A| . Further, assume that the prob-

ability r(ei,k) that individual i recalls experience ei, when presented with hypothesis k, is
given by the similarity between ei and event k as a share of the total similarity between
all the experiences in the memory database and hypothesis k, that is, r(ei,k) =

Si(ei,k)
∑e∈Ei

S(e,k) .

Then, the probability that individual i recalls experiences similar to hypothesis k ∈ K is
given by the total similarity between experiences related to k and hypothesis k as a share

6Relatedly, the functional form of similarity can very well be unique to individual i, and depend on her
behavioral characteristics, cognitive abilities, etc.
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of the total similarity between all the experiences in the memory database and hypothesis
k, that is,

ri(k) =
∑e∈Ek

i
Si(e,k)

∑e∈EH
i

Si(e,k) + ∑e∈EL
i

Si(e,k) + ∑e∈EO
i

Si(e,k)
(1)

Notably, an enlargement of experiences related to k leads to a higher recall probability of
hypothesis k, but experiences EO

i unrelated to k imply interference for ri(k).
We now link recall probabilities with the focal object of the current paper: inflation

expectations. Consistent with our two hypotheses of interest and without loss of gener-
ality, inflation can be characterized as a process with two states: a high regime (H) with
inflation equal to π̄H and a low regime (L) with inflation equal to π̄L. Assume that the
presence of the two regimes and the inflation levels associated with each regime are com-
mon knowledge.

Further, given probabilities of recall, assume that individual i draws Ti experiences
with replacement from her memory database, Ei. Let Ri(k) denote the number of times
that i successfully recalls events aligned with hypothesis k ∈ {H, L}; that is, Ri(k) is bino-
mially distributed as Ri(k) ∼ Bin(Ti,ri(k)). Then, individual i’s perceived probability that
regime k will realize is pi(k) =

Ri(k)
Ri(H)+Ri(L) for any k ∈ {H, L}. Her expected inflation is

given by
πe

i = pi(H)π̄H + (1 − pi(H))π̄L = pi(H)(π̄H − π̄L) + π̄L (2)

where pi(H) is the source of heterogeneous expectations in this simple setting.
In this setup, an increase in ri(H) increases, on average, the odds of successful recalls

of experiences aligned with hypothesis H, that is, Ri(H). An increase in the latter raises
the probability that individual i assigns to the high-inflation regime, thus putting upward
pressure on her inflation expectations as shown in equation (2). Proposition 1 formalizes
this positive relationship between inflation and the recall probability of events linked to
the hypothesis of high inflation.

Proposition 1. Individual inflation expectations πe
i are increasing in the recall probability of the

high-inflation regime.

Proof. See Appendix A.1.

2.2 Social Interaction

Now suppose that individual i socially interacts with other individuals j ∈ {1,2, ..., i −
1, i + 1, ..., Ni + 1}, such that every individual j shares experiences with i. Ni denotes the
total number of individuals who i interact with. We denote the set of experiences that
individual j shares with individual i by Ei→j (without putting any restrictions on the flow
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of information in the reverse direction). Experiences shared by individual j are catego-
rized into three mutually exclusive subsets: high inflation experiences, EH

i→j, low inflation
experiences, EL

i→j, and experiences irrelevant to high or low inflation, EO
i→j.

We assume that, when interacting with others, individual i’s assessment of similarity
between k-related experiences shared by any individual j and any hypothesis k is condi-
tional on the share of common demographic characteristics between i and j, δij. Therefore,
the similarity between any experience e ∈ Ek

i→j and hypothesis k is given by Si(e,k | δij).
This assumption allows for a heterogeneous function to judge the similarity between a
given hypothesis and experiences shared by others that explicitly depends on character-
istics of other individuals in the network.7

When computing recall probabilities, we assume that individual i assigns weight γi

to her own experiences and weight (1 − γi) to everyone else’s experiences. We further
assume that she assigns weight ωij ∈ [0,1] to experiences shared by individual j that de-
pends on the share of common demographic factors between individual i and j, and that
is such that ∑i ωij = 1. Let r̂i(k) denote individual i’s probability of recalling experiences
linked to hypothesis k ∈ {H, L} when she socially interacts with others, described by:

r̂i(k) =
γi ∑e∈Ek

i
Si(e,k) + (1 − γi)∑i ωij ∑e∈Ek

i→j
Si(e,k | δij)

γi ∑e∈Ei
Si(e,k) + (1 − γi)∑i ωij ∑e∈Ei→j

Si(e,k | δij)
(3)

where ∑e∈Ei
Si(e,k) =∑e∈EH

i
Si(e,k)+∑e∈EL

i
Si(e,k)+∑e∈EO

i
Si(e,k) denotes total own-experience

similarity and ∑e∈Ei→j
Si(e,k | δij) =∑e∈EH

i→j
Si(e,k | δij)+∑e∈EL

i→j
Si(e,k | δij)+∑e∈EO

i→j
Si(e,k |

δij) denotes total shared-experience similarity. In the subsequent analysis, we assume
without loss of generality that individual i always pays some attention to her own per-
sonal experiences, that is, γi ∈ (0,1] and that the personal as well as the network memory
databases contain both k-relevant and k-irrelevant experiences, so that ∑e∈EH

i
Si(e,k) > 0

for any k ∈ {H, L}.
To understand the effects that experiences shared on social networks have for indi-

vidual inflation expectations, we decompose the recall probability into a personal and

7Using common demographic characteristics is a natural way to do so, given the growing empirical
evidence that individuals with common demographic characteristics, such as gender and age group, share
similar experiences in terms of inflation (see, for instance, Malmendier and Nagel (2016), D’Acunto et al.
(2021b), Hajdini et al. (2022a), and Pedemonte et al. (2023), among others). Golub and Jackson (2012) discuss
the role that homophily plays for the convergence of beliefs to a consensus. More generally, sociologists, an-
thropologists and many others, such as McPherson et al. (2001) have established the role of homophily in the
network formation process which likely naturally carries over to similarity functions in the social network.
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network component as follows:

r̂i(k) =
γiSk

i

γiSi + (1 − γi)(Sk
δi.
+ SK\k

δi.
)︸ ︷︷ ︸

personal

+
(1 − γi)Sk

δi.

γiSi + (1 − γi)(Sk
δi.
+ SK\k

δi.
)︸ ︷︷ ︸

network

(4)

where Sk
i = ∑e∈Ek

i
Si(e,k) denotes the total similarity of relevant own experiences; SK\k

i =

∑e∈EK\k
i

Si(e,k) denotes the total similarity of irrelevant own experiences; Sk
δi.
=∑i ωij ∑e∈Ek

i→j
Si(e,k |

δij) denotes the total similarity of shared relevant experiences; and SK\k
δi.

=∑i ωij ∑e∈EK\k
i→j

Si(e,k |

δij) denotes the total similarity of shared irrelevant experiences. It is clear that the network
will have an effect on the recall probability of individual i if and only if she pays attention
to experiences shared on the network, that is, if and only if γi < 1. Conditional on γi < 1,
two opposing forces arise when the network shares k-relevant experiences, that is, when
Sk

δi.
increases. On the one hand, the personal component declines since it becomes more

difficult to retrieve personal k-relevant experiences. On the other hand, the network com-
ponent increases since it becomes easier to retrieve k-relevant experiences that are shared
from the network. On net, it is straightforward to show that the latter effect always pre-
vails since ∂r̂i(k)

∂Sk
δi.

> 0. By contrast, network k-irrelevant experiences increase SK\k
δi.

and thus

interfere with both the personal and network components of the recall probability of hy-
pothesis k, that is, ∂r̂i(k)

∂SK\k
δi.

< 0. Put differently, such experiences make it more difficult for

k-relevant experiences to be retrieved from the memory database. Proposition 2 formal-
izes this analysis.

Proposition 2. Consider individual i’s recall probability of hypothesis k in equation (4). Then,
the following statements are true:

1. The social network has an effect on the recall probability of individual i if and only if individ-
ual i allocates attention to experiences shared by others, that is, if and only if γi ∈ (0,1).

2. Suppose that i assigns some weight to the experiences shared by others, that is, γi ∈ (0,1).
Then,

∂r̂i(k)
∂Sk

δi.

> 0 and
∂r̂i(k)

∂SK\k
δi.

< 0 (5)

that is, additional k-relevant experiences increase the recall probability r̂i(k), whereas addi-
tional k-irrelevant experiences decrease recall probability r̂i(k).

Proof. See Appendix A.2.
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Figure 1 illustrates the results of Proposition 2 when there is variation in Sk
δi.

induced
by individual j in the network of i, while all the other experiences remain fixed. We im-
plicitly assume that ωij ̸= 0. Panel (a) shows that the response of r̂i(k) is strictly increasing
in the relevance added by individual j, Sk

δij
, when γi ∈ (0,1). Eventually, as j adds sub-

stantial amounts of relevance relative to the relevance granted by the personal and the
rest of the network databases, the recall probability converges to 1. When γi = 1 (only
own experiences receive attention), the recall probability is invariant to any changes in
the relevance added by individual j.

Zooming into the two components of the recall probability in panel (b), when γi ∈
(0,1), the personal component is strictly decreasing in the relevance added by individual
j and it converges to 0, implying that it is nearly impossible to retrieve any k-relevant per-
sonal experiences when j adds substantial relevance. By contrast, the network component
is strictly increasing in the relevance added by individual j and individual i will almost
always retrieve k-relevant experiences shared by the network when j adds substantial
relevance. Obviously, when γi = 1, the personal component is fixed and the network
component is turned off.

Figure 1: Illustration of Proposition 2

0 200 400 600 800 1000

0

1

0 200 400 600 800 1000

0

1

Note: The solid and dashed lines exhibit the responses of r̂i(k) and its components for γi = 0.3 and γi = 1, respectively. We implicitly

assume that ωij ̸= 0. The model is parameterized as follows: Sk
i = 20, Sk

δij
= [0,1000], Sk

δi,−j
= 20, SK\k

i = 40, SK\k
δi.

= 90, Sk
j = [0,1000],

Sk
δj.

= 40, SK\k
j = 50, SK\k

δi.
= 80, γj = 0.9, Ti = Tj = 10000.

Our ultimate goal is to understand how the network affects inflation expectations.
Consider two individuals i and j that are connected via the network. Suppose that indi-

10



vidual j adds a new personal experience that is relevant for the high-inflation regime into
her memory database and she shares the experience with individual i. From Proposition
1, the inflation expectations of individual j increase due to an increase in her subjective
probability assigned to the high inflation regime, pj(H). Then, as long as γi < 1 and
ωij ̸= 0, this exogenous increase in the expectations of i’s network should lead to an in-
crease in the individual inflation expectations of individual i.

Corollary 1 formalizes this result. Its important that, conditional on the individual
paying attention to the network, increases in the inflation expectations of others should
increase individual inflation expectations.

Corollary 1. Suppose that individual i pays attention to her network and to the experiences that
j shares, that is, γi < 1 and ωij ̸= 0. Suppose further that the inflation expectations of j increase
because she observes an additional H-relevant personal experience. Then, this increase in the
inflation expectations of individual j will lead to an increase in the inflation expectations of i.

Proof. Follows directly from Propositions 1 and 2.

Figure 2: Illustration of Corollary 1

0 1

0

1

Note: Panel (a) scatter plots the subjective probability pi(H) as a function of pj(H) when γi = 0.3 (black) and γi = 1 (orange). Panel

(b) scatter plots the inflation expectations of individual i, πe
i , as a function of πe

j when γi = 0.3 (black) and γi = 1 (orange). Parameter-

ization is as in Figure 1.

Figure 2 visualizes the result of Corollary 1. We consider a similar setting to the one
in Figure 1, that is, all else but SH

δij
, the total similarity of shared, high-inflation-relevant
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experiences, is fixed. For each simulated value of SH
δij

, we compute r̂i(k) and r̂i(k) for k =
{H, L}. Then, for each value of r̂i(k) we draw Ri(k)∼ Bin(Ti, r̂i(k) for k = {H, L}. Next, we
compute pi(H) and πe

i , as shown in the previous section. Finally, we repeat the same com-
putation for individual j. Panel (a) plots the probability that i assigns to the high inflation
regime pi(H) as a function of pj(H), whereas panel (b) plots the inflation expectations of i
as a function of the expectations of others. Figure 2 shows that, as long as individual i pays
attention to the experiences shared by j who is the source of variation in the expectations
of the network, then her inflation expectations are positively affected by changes in the in-
flation expectations of j. When the network gets no weight (γi = 1), then there is no effect.

Finally, we are interested in understanding the effects that social networks of specific
demographic groups have for the individual recall probability.

r̂i(k) =
γiSk

i
γiSi + (1 − γi)Sδi.︸ ︷︷ ︸

personal

+
(1 − γi)Sk

δi.=1

γiSi + (1 − γi)Sδi.︸ ︷︷ ︸
common-demographics network

+
(1 − γi)Sk

δi.=0

γiSi + (1 − γi)Sδi.︸ ︷︷ ︸
other-demographics network

(6)

where Sδi. = Sk
δi.
+ SK\k

δi.
. Suppose there is a k-relevant “experience” shock due to addi-

tional k-relevant experiences that increases Sk
δi.

. We compare the effect of such as shock
on the recall probability r̂i(k) in two cases: i) all the k-relevant experiences have been
shared exclusively by the common-demographics network; ii) part of the k-relevant ex-
periences have been shared by the common-demographics network and the rest by the
other-demographics network. In i), the shock will interfere with the personal and other-
demographics network components of the recall probability, but it will amplify the common-
demographics network component. In ii), the shock will interfere only with the personal
component, but it will amplify both the common and other-demographics network com-
ponents. Proposition 3 shows that for the effect of the shock on the recall probability
r̂i(k) to be higher in i) than in ii), it has to be that the marginal relevance of the common-
demographics network (change in the similarity between k and k-relevant experiences in
the common-demographics network) is higher than the marginal relevance of the other-
demographics network (change in the similarity between k and k-relevant experiences in
the complete network).

Proposition 3. Suppose that the network of individual i is shocked by a k-relevant “experience”
shock that increases Sk

δi.
. The effect of the shock on r̂i(k) is higher when the shock hits only the

common-demographics network than when it occurs to the complete network if, following the
shock, the common-demographics network adds more relevance then the other-demographics net-
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work, that is, if
∂Sk

δi.=1

∂e
>

∂Sk′
δi.=0

∂e
(7)

where
∂Sk′

δi.
∂e denotes the change in Sk

δi.
, for any δi. ∈ {1,2}, in response to an additional k-relevant

experience e.

Proof. See Appendix A.3.

Importantly, Proposition 3 implies that networks of common-demographics raise ex-
pectations more than complete networks, if, in response to an inflationary shock in the
network, the common-demographics network adds more relevance than the other-demographics
network.

2.3 Implications for Stability

Social networks can play an important role for the stability of inflation expectations, as we
show next. While this result aligns with models of social learning (e.g. DeGroot (1974)),
we highlight how the salience of shared experience can interact with the network struc-
ture in affecting stability conditions.

To assess the role of social networks for the stability of recall probability of hypothesis
k, consider an idiosyncratic shock to the recall probability of a member in the network.
Again, focus on a social network of two individuals, and assume, for simplicity, that the
two individuals share all personal experiences with one another and that they pay the
same degree of attention to their personal experiences, γ ∈ (0,1). The recall probability of
i for any i ∈ {1,2} can be written as

r̂i(k) =
γSk

i + (1 − γ)Sk
δij

γSk
i + (1 − γ)Sk

δij
+ γSK\k

i + (1 − γ)SK\k
δij

(8)

where Sk
i denotes individual i’s total similarity of her own, k-relevant experiences and

SK\k
i denotes individual i’s total similarity of her own k-irrelevant experiences with hy-

pothesis k, respectively; Sk
δij

and SK\k
δij

denote individual i’s similarity between the network
k-relevant experiences and k-irrelevant experiences with hypothesis k, respectively. Im-
portantly, the two individuals do not have to assign the same similarity to experiences
relative to hypothesis k, that is, Sk

δij
̸= Sk

i in general. To fix ideas, we set Sk
δij
= ϵSk

i , where
ϵ > 0 captures this potential difference between individual i’s and individual j’s interpre-
tation of the same k-relevant experiences. When ϵ = 1, the two individuals interpret ex-
periences in exactly the same way, that is, they share the same similarity functions. When
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ϵ > 1, i perceives more salience than j in the experiences that j shares. By contrast, when
0< ϵ < 1, i sees less salience than j in the experiences that j shares. More broadly, we think
of ϵ as capturing the degree of additional salience of experiences obtained when experi-
ences are shared, and as the perceived heightened similarity induced by such salience.

To illustrate this notion of salience, consider the following example. A person who
commutes often by car observes an increase in the gas price at the local gas station and
shares this personal experience with friends on a social platform. Then, relative to the
person sharing this experience, friends can interpret it as more salient, as salient, or less
salient for inflation and effectively more, equally or less relevant. We come back to this
example when discussing the importance of ϵ for instability.

To further simplify the analysis without missing key insights, we assume that γSK\k
1 +

(1 − γ)SK\k
δ12

= γSK\k
2 + (1 − γ)SK\k

δ21
= SK\k. That is, the total own- and shared-experience

similarity of irrelevant experiences, appropriately weighted in the network, is the same
across individuals. The recall probabilities of hypothesis k for individuals 1 and 2, respec-
tively, can be then re-written as

r̂1(k) =
γSk

1 + ϵ(1 − γ)Sk
2

γSk
1 + ϵ(1 − γ)Sk

2 + SK\k
and r̂2(k) =

γSk
2 + ϵ(1 − γ)Sk

1

γSk
2 + ϵ(1 − γ)Sk

1 + SK\k
(9)

Fixing all k-irrelevant experiences, individual 2 has an effect on the recall probability of in-
dividual 1 through Sk

2 and individual 1 has an effect on the recall probability of individual
2 through Sk

1. Therefore, for given Sk
2, SK\k, and ϵ, we have r̂2(k) = f

(
r̂1(k) | Sk

2,SK\k,ϵ
)

.

Similarly, for given Sk
1, SK\k, and ϵ, we have r̂1(k) = g

(
r̂2(k) | Sk

1,SK\k,ϵ
)

. From here, it
is straightforward to see that, generally, there exist three equilibria: i) r̂∗1(k) = r̂∗2(k) = 0;
ii) 0 < r̂∗∗1 (k), r̂∗∗2 (k) < 1; and iii) r̂∗∗∗1 (k) = r̂∗∗∗2 (k) = 1.8 However, two equilibria occur
under special circumstances: for r̂∗1(k) = r̂∗2(k) = 0 it must be that Sk

1 = Sk
2 = 0, and for

r̂∗∗∗1 (k) = r̂∗∗∗2 (k) = 1 it must be that SK\k
1 = SK\k

2 = 0. For this reason, focus on the more
likely equilibrium with 0 < r̂∗∗1 (k), r̂∗∗2 (k) < 1.

Proposition 4. Consider the setting above where r̂2(k) = f
(

r̂1(k) | Sk
2,SK\k,ϵ

)
and r̂1(k) =

g
(

r̂2(k) | Sk
1,SK\k,ϵ

)
where both f (.) and g(.) are increasing functions. We assume that Sk

i ,SK\k
i >

0, for any j ∈ {1,2}. implying that there is a unique equilibrium with 0 < r̂∗∗1 (k), r̂∗∗2 (k)< 1. This
equilibrium is stable if and only if

∂ f (r̂1(k))
∂r̂1(k)

× ∂g(r̂2(k))
∂r̂2(k)

< 1 (10)

8As shown Figure 3, in the case of γ/(1−γ)> ϵ, the equilibria are (r̂∗∗1 (k), r̂∗∗1 (k)) and (r̂∗∗∗1 (k), r̂∗∗∗1 (k)),
whereas in the case of γ/(1 − γ) < ϵ all three are equilibria.
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for recall probabilities close to equilibrium (r̂∗∗1 (k), r̂∗∗2 (k)).

Proof. See Appendix A.4.

Proposition 4 provides the general condition under which the equilibrium of interest
(r̂∗∗1 (k), r̂∗∗2 (k)) is stable. Specifically, stability is granted if the product of the marginal
responses of recall probabilities is less than unity. Corollary 2 contextualizes Proposition
4 and shows that the equilibrium with 0 < r̂∗∗1 (k), r̂∗∗2 (k) < 1 is stable only if the degree
of perceived salience for experiences shared on the network ϵ is lower than attention to
personal experiences relative to attention paid to shared experiences, γ/(1 − γ).

Corollary 2. Consider the setting as in Proposition 4. Perturbating r̂1(k) or r̂2(k) away from the
equilibrium (r̂∗∗1 (k), r̂∗∗2 (k)) yields two outcomes in terms of equilibrium stability:

• If ϵ < γ
1−γ , then recall probabilities converge back to the equilibrium above.

• If ϵ > γ
1−γ , then recall probabilities diverge away from the equilibrium above toward either

r̂1(k) = r̂2(k) = 0 or r̂1(k) = r̂2(k) = 1.

Proof. See Appendix A.5.

Corollary 2 shows that if the additional degree of salience for shared experiences ex-
ceeds attention to own experiences relative to shared experiences (ϵ > γ

1−γ ), then an in-
cremental positive shock to the recall probability of one person will push r̂1(k) and r̂2(k)
toward 1, whereas a small negative shock will lead to convergence of r̂1(k) and r̂2(k) to-
wards 0. On the contrary, if the aggregate attention to own experiences surpasses the ad-
ditional degree of perceived salience for shared experiences, then a shock to an individual
recall probability cannot pull recall probabilities away from their equilibrium. There is,
therefore, an interaction between attention to shared experiences and salience of shared
experiences. Figure 3 visualizes the stability properties of this equilibrium for both cases.

Because Corollary 2 contains an interaction between salience and the network struc-
ture, it nests several nests several interesting extreme cases. First, if individuals pay al-
most no attention to shared experiences, that is, γ → 1, salience – captured by ϵ – has to
be extremely high (approaching ∞) for instability to occur. Second, by the same token,
if γ → 0, one would need very little salience to induce instability in expectations. Last,
when ϵ = 1 it is simply the total attention to own experiences (2γ) that defines the stability
condition. That is, if total attention to own experiences exceeds total attention to shared
experiences, there is stability (γ > 1/2).

This implication of our model would also arise in the model of DeGroot (1974) with
some slight modifications. In particular, for ϵ = 1, our model’s stability conditions co-
incide with the DeGroot (1974) model. What is novel in our setting is that the stability
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properties of inflation expectations are more generally dependent on ϵ – they depend on
how salient shared experiences are perceived to be. As shared experiences become rela-
tively more salient, these experiences are more easily retrievable and contribute more to
inflation expectations, affecting the stability condition.

Figure 3: Illustration of Proposition 4

0 1

0

1

0 1

0

1

Note: The figure plots the recall probability of individual 2 (dashed red curve) as a function of the recall probability of individual 1

(solid blue curve) as well as the recall probability of individual 1 as a function of the recall probability of individual 2. In panel (a)

we set ϵ = 0.3, whereas in panel (b) we set ϵ = 2.8. Moreover, γ = 0.5, π̄L = 2, π̄H = 10, T1 = T2 = 10000, Sk
1 = [0,1000], Sk

2 = 10, and

SK\k = 15.

Finally, Figure 4 illustrates that there is a one-to-one mapping between the stability
condition for the recall probability and the stability condition for inflation expectations.
The figure scatter-plots the response of the inflation expectations of individual 2 as a func-
tion of the inflation expectations of individual 1 (blue) as well as the response of the infla-
tion expectations of individual 1 as a function of the inflation expectations of individual 2
(red). The left panel shows that when ϵ < γ/(1− γ), inflation expectations remain stable,
however, as shown in the right panel, they become unstable when ϵ > γ/(1 − γ).
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Figure 4: Stability for Inflation Expectations

Note: The figure scatter plots the inflation expectations of individual 2 as a function of the inflation expectations of individual 1 (blue

crosses) as well as the inflation expectations of individual 1 as a function of the inflation expectations of individual 2 (red circles).

Parameterization is as in Figure 3.

To gain further intuition, revisit the example of a local gas price increase. Recall that
individual i shared the personal experience of a local gas price increase. If this event
is perceived as having a sufficiently high salience, then every friend this experience is
shared with interprets it as more salient than if it were their own. This chain of reactions
will eventually destabilize inflation expectations. By contrast, if ϵ is sufficiently low, ev-
ery person the experience is shared with downplays the importance this experience has
for inflation, thus inducing stability.

2.4 Testable Implications for Inflation Expectations

The model has several directly testable implications, most eminently predicting an impact
of the social network for the inflation expectations formation process but also for belief
stability. Here, we briefly sketch out how predictions of the model may map into a fairly
general empirical environment.

Following Proposition 2, if a researcher has access to data on the inflation expectations
of an individual or region i, πe

i , who is potentially socially connected to individual or re-
gion j ∈ {1,2, ..., i − 1, i + 1, ..., N, N + 1}, respectively, combined with data on the intensity
of the network connections ωij, then it is possible to estimate the following specification
to test for the importance of expectations of others:
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πe
i = α + β ×

N

∑
j=1

ωijπ
e
j + εi (11)

Here, if one finds β > 0, then the social network matters. In addition, one can use the
estimates of Equation 11 to test the stability of the network based on Proposition 4, which
holds whenever β < 1. Finally, if the source of variation in the expectations of others is
coming from movement of salient prices, such as gas prices, denoting the corresponding
estimate of β by βS, one would expect βS > β according to the proposition.

Additionally, if a researcher has access to demographic characteristics d, it is possible
to split the network’s expectations into common-demographics and other-demographics
components, testing Proposition 3. That is, for each individual i with inflation expec-
tations πe

i,d one then can construct common-demographics and other-demographics net-
work expectations as ∑N

j=i ωijπ
e
j,d and ∑N

j=i ωijπ
e
j,−d, respectively, in analogy to the respec-

tive elements in Proposition 3. The following specification provides a mapping from these
propositions to the data:

πe
i,d = α + β1 ×

N

∑
j=i

ωijπ
e
j,d + β2 ×

N

∑
j=i

ωijπ
e
i,−d + εi (12)

In summary, these specifications allow one to test the four main implications of our
model:
Testable Implications

(T.1) β > 0: Social interaction has a positive effect on inflation expectations if people pay
attention to experiences shared by others (see Proposition 2).

(T.2) β1 > β: Networks of common demographics raise expectations more than complete
networks, if, in response to a shock in the network, the common-demographics net-
work adds more relevance than the complete network (See Proposition 3).

(T.3) β < 1: Social networks do not induce instability to inflation expectations (See Propo-
sition 4).

(T.4) βS > β: Idiosyncratic inflationary shocks that are perceived to be more salient are more
likely to destabilize inflation expectations (See Corollary 2)

3 Data
To test these predictions of the model, analysis requires a dataset that combines dense

survey data on inflation expectations of consumers with a map of their social network.
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We construct a novel dataset that contains these two essential features.
Data on consumer inflation expectations come from the Indirect Consumer Inflation

Expectations (ICIE) survey, developed by Morning Consult and the Center for Inflation
Research of the Federal Reserve Bank of Cleveland. This survey is nationally represen-
tative of the US and Hajdini et al. (2022c,a) describe its properties in detail. Of note, the
survey elicits expectations of changes in individually relevant prices instead of aggregate
prices; hence any measured effect of the social network will not be in relation to aggre-
gate inflation, but rather individually relevant expectations. The main variables of inter-
est pertinent to our analysis that the survey records – in addition to inflation expectations
– include the identity of counties, gender (male-female), income brackets (less than 50k,
between 50k and 100k, and over 100k), age (18-34, 35-44, 45-64, 65+), and political party
(Democrat, Republican or Independent). To remove outliers, our analysis drops the top
and bottom 5 percent of responses at each point in time, resulting in 1.9 million monthly
observations for the period from March 2021 to July 2023.

Data on social connections at the county level come from the Social Connectedness
Index Database (SCI). The SCI was first proposed by Bailey et al. (2018a) and measures
the social connectedness between different regions of the United States as of April 2016,
based on Facebook friendship connections. Specifically, the SCI measures the relative
probability that two representative individuals across two US counties are friends with
each other on Facebook. That is,

SCIi,j =
FB Connectionsi,j

FB Usersi × FB Usersj
,

where FB Connectionsi,j denotes the total number of Facebook friendship connections be-
tween individuals in counties i and j and FB Usersi, FB Usersj denote the number of users
in location j. Intuitively, if SCIi,j is twice as large as SCIi,l, a given Facebook user in lo-
cation i is about twice as likely to be connected with a given Facebook user in location j
than with a given Facebook user in location l.

In our analysis, we normalize the SCI by county so weights add up to unity:

ωc,k =
SCIc,k

∑
k

SCIc,k

Using these weights, we then construct the central variable in our analysis, the expecta-
tions of others:

πe,others
c,t = ∑

k ̸=c
ωc,kπe

k,t (13)
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where πe
k,t captures the average inflation expectations of individuals in county k at time

t. In particular, this measure implies that a county c will be more exposed to information
in county k if many users of county k have Facebook friendship connections with users
in county c. Because our SCI weights were sampled in 2016, our measure of inflation
expectations of others is unlikely to be influenced by weights that are endogenous to the
post-pandemic rise of inflation and inflation expectations. Our analysis at the same time
assumes that social networks in 2021 are correlated with social networks in 2016.

It is important to highlight that we do not analyze individual-level social connected-
ness. The SCI is a proxy of how connected an average individual of a given county is to in-
dividuals in another county. This measure has advantages and disadvantages. Its useful-
ness for our analysis stems from the common factors that explain connections between re-
gions, such as past migration patterns (see Bailey et al. (2018a), Bailey et al. (2022)). In line
with this feature of the data, we are not necessarily interested in the information shared
exclusively on Facebook,9 but instead in common patterns of social connections. The SCI
is a proxy for such a deeper social relationship between individuals spatially separated.

While Bailey et al. (2018a) establish in detail the social connectednesss properties of
the measure, we provide examples of the connectedness weights as applicable to our
analysis. In Appendix B.1, we show heat maps depicting the weights (ωc,k) for differ-
ent cities. We observe three distinct patterns. First, as expected, geography plays a sig-
nificant role, with Cleveland, OH (Cuyahoga county) showing stronger connections to
nearby counties. Second, interestingly, we also observe robust social links with more dis-
tant counties. Third, there is substantial heterogeneity in social connectedness, so even
neighboring counties show varying degrees of influence on cities. Our empirical strategy
and robutness exercises will take into considerations those geographic patterns, as we
discuss in the subsequent sections.

4 Empirical Analysis
This section shows that the social network affects individual inflation expectations in

line with the predictions of the model.

4.1 Empirical Challenges and Identification Strategy

The main challenge to identifying the effect of the social network lies in ruling out that the
empirical measures of beliefs of others reflect “other factors” common across counties in

9Our instrumental variables strategy below, which exploits salient local gas prices as the instrument,
does suggest that salient information such as information on local gas prices flows through the network –
information that is highly relevant for the formation of inflation expectations.
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the social network. Whenever such other factors are sufficiently common across counties,
they may create spurious co-movement in individual inflation expectations and inflation
expectations of others.

Several factors are likely to constitute such a challenge to identification. First, common
shocks may create co-movement in individual beliefs and beliefs in the network. These
common shocks may occur at the aggregate level, or at more disaggregated but influen-
tial local levels. Second, other networks may transmit shocks and thereby create spurious
co-movement in inflation expectations. Such networks may be (local) trade networks
that connect counties or they may include common retail networks that generate price
co-movement in consumption baskets across counties. Such common price co-movement
may then lead people in the social network to form similar inflation expectations. Third,
homophily in social networks – we are friends with similar people – may induce common
price movements because friends who are similar share similar consumption baskets, and
hence, shared information about similar baskets may lead to co-movement in inflation ex-
pectations.

While many more factors may create co-movement in inflation expectations, the sub-
sequent analysis builds on three different approaches to provide identification. Not least
in their totality, the three approaches contribute to the strength of identification. At the
same time, they address different aspects of the model predictions.

Our first approach accounts for “other factors” directly, as much as is possible. It con-
sists of enriching the data structure of the network and creating additional variation at the
county level that can then be used to filter out variation associated with “other factors.”
Our third approach is to construct exogenous, idiosyncratic local shocks to inflation ex-
pectations which can be used to gauge the causal impact of social interaction on inflation
expectations, irrespective of the concerns outlined above. All three approaches provide an
estimate for the importance of social networks on the formation of inflation expectations
as well as network stability (Propositions 2 and 4). The second approach additionally
gauges the importance of common demographics in the social network whose relevance
is posited in Proposition 3, while the third approach considers the role of salience for the
stability of inflation beliefs in the social network (Corollary 2). The third approach also
addresses endogeneity concerns such the Manski (1993) reflection problem.10

10Notably, the reflection problem induces a bias in the estimated effects of social networks on inflation
expectations only when the network matters for expectations in the first place. By contrast, if the social
networks are, in reality, irrelevant for individual expectations, then the Manski (1993) reflection problem
disappears. In Appendix A.1 we prove this result. Specifically, we analytically compute the degree of bias
in the OLS estimate of the effect of the expectations of others on individual expectations, stemming from
the reflection problem. We show that, generally, the only case when the bias induced by the reflection
problem disappears is when the true effect of the expectations of others on individual expectations is
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Specifically, to overcome the identification challenges, the first approach filters out
common aggregate shocks and time-county-specific variation by including time fixed ef-
fects as well as the average expectations of others in that county. These latter, time-county-
level controls capture the role of common trends, close-by connections due to proximity
in space, and county-specific shocks, such as local price shocks. We also filter out any
systematic county characteristics through county fixed effects. Then, to identify whether
information is transmitted through social networks or other local networks that may be
spuriously correlated with social networks, we explicitly exclude proximate counties and
only keep counties beyond a certain distance; hence, we ignore data from counties that
are more likely to share spatial shocks. As a further step to take into account the role
of other networks that might spuriously correlate with the social network, we include
detailed time-varying controls. These controls include individual demographic charac-
teristics and demographic-time fixed effects as well as an explicit measure of price shocks
transmitted through common retail networks. These controls aim to explicitly remove
variation that stems for example from the co-movement of prices in similar consumption
baskets which homophily embodied in social networks might generate.

The second, complementary approach creates additional variation at the county level
to gain identification. Specifically, we construct county × demographic × time networks
that allow us to include county-time fixed effects. These county-time fixed effects absorb
any variability that affects all demographic groups in a county in a given period of time
equally. They alleviate concerns about spatial spillovers, trade relationships, or demand
spillovers from nearby regions, among other confounding but unobserved factors.

Finally, the third approach applies an instrumental variables approach that addresses
any remaining endogeneity concerns, including those implied by the Manski (1993) re-
flection problem. Specifically, the approach exploits the interaction of commuting shares
by car across counties11 and the national gas price to obtain county-time specific exoge-
nous shocks to gas prices after filtering out any common time variation. We project in-
flation expectations on this exogenous local variable and use it to construct a measure of
exogenous variation in the inflation expectations of others. This instrument then allows
one to estimate an unbiased effect of the expectations of others on individual inflation
expectations.12 Since we know that higher gas prices lead to higher inflation beliefs, the
instrumented regression also provides a glimpse into the type of information that flows

absent. As a result, it must be that any non-zero empirical correlation between individual expectations and
the expectations of others indicates the relevance of social networks for inflation expectations.

11As Appendix B.2 shows, these shares are not correlated with the social network shares.
12Because the instrument embodies idiosyncratic local gas price experiences, any resulting relevance of

inflation expectations of others does not derive from simply speeding up learning about common shocks,
but truly from idiosyncratic experiences becoming available over the network.
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through the social network: On average, people must be talking about salient inflation-
relevant experiences, such as prices at the pump.

Across all of these strategies, as we show next, we find strong evidence in favor of the
hypothesis that social networks are important in determining individual inflation expec-
tations.

4.2 Individual Inflation Expectations and the Inflation Expectations of

Others

Social interaction has a positive association with the inflation expectations of others as we
show in this section, even if we take into account a plethora of potentially confounding
“other factors.”

To establish the evidence in support of this first model prediction (T.1), we estimate
several specifications. These specifications use individual-level data which allows us to
take into account detailed fixed effecsts. Specifically, we estimate a set of specifications
based on the following one:

πe
i,c,t = α0 + α1πe

−i,c,t + β ∑
k ̸=c

ωc,kπe
k,t + εi,c,t, (14)

where πe
i,c,t denotes the inflation expectations of individual i, located in county c at time

t. πe
−i,c,t denotes the expectations of others in county c which exclude the expectations of

individual i from the county average. In addition, to take into account “other factors” as
discussed above, we include into the set of specifications county fixed effects, time fixed
effects, demographic characteristics, interactions of demographics and time fixed effects,
as well as an interaction of county demographic characteristics such as the county-level
share of Hispanics and time fixed effects. We also estimate specifications where we ex-
clude nearby counties, or take into account the presence of common retail networks. All
observations are weighted by the number of respondents in a county in a given period of
time.

Across specifications, strong evidence emerges for the first testable implication of the
model: the inflation expectations of others are statistically highly significantly associated
with individual inflation expectations. Table 1 reports the estimation results from a first
set of specifications. The first row displays the coefficient estimates associated with the
network-weighted inflation expectations of other counties, and the second row displays
the estimates for county “leave-out” inflation expectations. The OLS estimates in Column
1 indicate an elasticity of inflation expectations of 0.19 for an individual with respect to
inflation expectations in other counties. The inclusion of time fixed effects that absorb
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Table 1: Individual Inflation Expectations and the Inflation Expectations of Others
(1) (2) (3) (4) (5) (6) (7) (8)

Expectations of Others 0.194*** 0.176*** 0.252*** 0.115** 0.051*** 0.068*** 0.058*** 0.059***
(0.043) (0.050) (0.074) (0.047) (0.017) (0.019) (0.020) (0.020)

County Expectations 0.755*** 0.732*** 0.603*** 0.557*** 0.542*** 0.469*** 0.454***
(0.048) (0.042) (0.058) (0.049) (0.051) (0.019) (0.016)

Time FE No Yes No Yes Yes Yes Yes Yes
County FE No No Yes Yes Yes Yes Yes Yes
Demographic FE No No No No No Yes Yes Yes
Demographic-Time FE No No No No No No Yes Yes
Combined Dem-Time FE No No No No No No No Yes
Observations 1,926,282 1,926,282 1,926,282 1,926,282 1,926,282 1,925,393 1,925,393 1,925,393
R-squared 0.017 0.017 0.017 0.014 0.017 0.033 0.036 0.049

Note. The table shows the results of regression (14), where the dependent πe
i,c,t is the inflation expectations of individual i who answers

from county c at time t. Observations are weighted by the number of responses in a county in each period. Demographics fixed effects
are the income, age, politics and gender definitions used in the paper and are at the individual level. Combined Dem-Time FE is
a time fixed effect interacted by the combination of demographic characteristics that an individual has (for example, male-<35 yo,
<100k, independent fixed effect interacted by a time fixed effect. Standard errors are clustered at the county level.

time variation in inflation common to all counties leaves this result almost unchanged,
with a coefficient of 0.18 (Column 2). Likewise, the inclusion of county fixed effects that
capture the systematic, time-invariant effect of county characteristics preserves this re-
sult at a similar magnitude, with a coefficient of 0.25 (Column 3). Absorbing jointly most
of this variation by including both county and time fixed effects again implies a statisti-
cally significant coefficient (Columns 4 and 5), whether or not county-level expectations
of others are taken into account.13 Now, an increase of 1 percentage point in the inflation
expectations of others is associated with an increase of 0.05 to 0.12 percentage points in
an individual’s inflation expectations.14

An important finding is that this relationship between individual inflation expecta-
tions and the inflation expectations of others notably remains robust when we take into
account demographic fixed effects (Column 6), an interaction of demographic characteris-
tics one at a time with time fixed effects (Column 7) and an interaction of multiple demo-
graphic characteristics with time fixed effects (Column 8). These demographic fixed ef-
fects include indicator variables for brackets of income, age, political affinity and gender.
An example for the cells captured by this third interaction is given by an indicator vari-
able for men under 35 years of age and with income less than 100k. As discussed, these
demographic variables and their interactions may correlate with the network weights –
we are friends with similar people – and similar time trends we experience along with

13In line with other surveys of households expectations, even in controlled environments, as in Coibion
et al. (2022), our analysis accounts for little of the variation in terms of R2. This result is due to high
heterogeneity at the individual level. At the county level when this heterogeneity is average out, we find
similar results, but crucially, also an R2 greater than 40%.

14In Appendix A.2 we show that the inclusion of a time fixed effect when the network has common
distribution across counties can generate a negative bias. Therefore, these results present a lower bound
for the true OLS coefficient. We address this issue in the next sections.
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our friends. As a consequence, they might lead to an exposure to similar prices across
counties and hence, correlated inflation expectations. But, because we explicitly filter out
variation associated with these common demographic factors and their trends, our re-
sults indicate that inflation expectations of others transmitted through social connections
– beyond what is due to similarity in social connections – are indeed driving individual
inflation expectations. That is, the density of our network data provides sufficient hetero-
geneity in social connections to allow us to detect transmission of inflation expectations
through the social network.15

The first model prediction (T.1) is also robust to taking into account common, local
spatial shocks. To establish this finding, our analysis uses expectations of others com-
puted only from counties outsides a certain radius of a given respondent’s county. When
we then re-estimate the main specifications above, we find across specifications that the
inflation expectations from far-away counties affect a respondent’s own inflation expecta-
tions when respondents are connected through social networks to those counties. Table 6
in Appendix D shows the results for this exercise. These results align with the findings in
Bailey et al. (2018b, 2019) that the experiences in the housing market of far-away friends
affect an individual’s local housing decisions, such as the choice of renting or buying.

While common retail networks and their common prices across counties might also
imply a spurious transmission of inflation expectations through the social network, this
channel is likely not the explanation for our findings either. Consider, for instance, the
scenario where retailers implement uniform pricing strategies across locations, as is the
case for the US (DellaVigna and Gentzkow, 2019). In such cases, counties that share com-
mon retail chains may experience synchronized price adjustments (Garcia-Lembergman
(2020)), likely synchronizing inflation expectations. In order to control for the propaga-
tion of shocks through the retail-chain networks, we construct exposure to common retail
chains using weights that characterize the connectedness of each pair of counties in the
retail chain dimension, as measured by Garcia-Lembergman (2020). These weights place
higher weight on counties k that are important in terms of sales for the dominant retail
chains in county c. Based on these weights, we calculate the exposure to inflation expec-
tations in counties with shared retail chains and incorporate this measure of exposure as a
control variable in our regression analysis. Including such controls for inflation expecta-

15Additionally, in Table 7 in Appendix D, we take into account further demographic characteristics
measurable at the county level, again interacted with a time fixed effect to control for similar trends of
similar counties. Such characteristics include the share of foreign born individuals at the county level,
income per capita, the share of African American, the share of the Hispanic population, the share of white
non-Hispanic population, the poverty rate and the share of votes that Joseph Biden got in the county in
the 2020 presidential election. Similarly, we find that our key coefficient of interest, on the expectations of
others, remains positive and significant.
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tions in counties with shared retail chains does not change our key findings, as Table 8 in
Appendix D shows. Therefore, our findings likely come from the social network and not a
common price shock given a similar consumption basket and common retail networks.16

In the next section we also provide another set of results that show that it is unlikely
that the main findings come from other common factors, and not the social network. By
splitting the network at the county level, we can add county-time fixed effects, controlling
for common variation at the county level, including price shocks.

4.3 Individual Inflation Expectations and the Inflation Expectations of

Similar Others

Strong evidence for the role of expectations of others affecting individual inflation expec-
tations (Proposition 2) also emerges when we apply our second identification approach.
The evidence from applying this approach moreover aligns with predictions specific to
our memory model (Proposition 3) rather than with those of a basic statistical model
of learning: The beliefs of similar others influence inflation expectations if experiences
shared in networks of similar others are perceived as more relevant rather than irrelevant.

To generate these findings, our analysis constructs exposure to inflation expectations
of similar others in distant counties. In particular, we define such exposure as:

∑
k ̸=c

ωc,kπe
d,k,t

where πe
d,k,t denotes the average inflation expectations across individuals with demo-

graphic characteristic d located in county k in period t. The demographic characteristics
we consider include gender (male, female), political affiliation (Democrats, Republicans,
Independents), income (less than 50k, between 50k and 100k, over 100k), and age (18-34,
35-44, 45-64, 65+).

Our analysis then estimates the following specification:

πe
i,d,c,t = α0 + α1πe

−i,d,c,t + β1 ∑
k ̸=c

ωc,kπe
d,k,t + θct + εi,c,t. (15)

which represents a not only a direct test of model predictions (T.2), but also (T.3) by using
expectations of similar others. Why? πe

i,d,c,t denotes the inflation expectations of indi-
vidual i, with demographic characteristic d, in county c at time t; πe

−i,d,c,t represents the

16Garcia-Lembergman (2020) finds that such networks influence local prices, so our result imply that the
influence on inflation expectations seems to originate from the social network and not from price shocks
transmitted through shared retail networks.
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average inflation expectations of all the other individuals in that same county c that share
the same demographic characteristics d with individual i; and ∑k ̸=c ωc,kπe

k,t captures the
inflation expectations of similar others in distant counties. If the similarity between in-
dividuals matters for the transmission of inflation expectations, then we expect to find a
positive estimate of β1 > β, that is larger than when using expectations of all others in
distant counties regardless of demographics ∑k ̸=c ωc,kπe

k,t.
This specification also implements our second identification approach, in addition to

testing our model predictions: Because by construction there are multiple expectations
of others at each point in time for a given county – one for each demographic category –
we can exploit this additional variation in beliefs of others by including county-time fixed
effects. This inclusion of county-time fixed effects addresses one main concern for identi-
fication, which is that counties connected by social ties are exposed to common regional
shocks which may create spurious co-movement of expectations. For example, San Fran-
cisco and LA are connected socially, and, at the same time, there are common shocks in
California that affect inflation expectations in both cities. Hence, even if San Francisco
and Los Angeles were not connected by the social network, we would expect their infla-
tion expectations to spuriously co-move. The county-time fixed effects take into account
any such common regional shocks in California and even shocks in the county itself. The
identifying variation needed on top of the common variation comes from comparing the
inflation expectations of individuals who live in the same county and are connected to
the same other counties, but who have absorbed different experiences of others because
they belong to different demographic groups.

Our results show that demographic similarity along several dimensions – gender, po-
litical affiliation, income, and age – always plays an important role in the process of belief
formation. For example, in the case of gender,17 the effect of one’s social network turns
out to be statistically significant and economically relevant. A 1 percentage point increase
in the inflation expectations of the gender-specific network increases own-inflation ex-
pectations between 0.28 and 0.78 percentage points. Notably, after we additionally filter
out granular time, state-time, county, and county-time fixed effects, the coefficient is al-
ways statistically significant and the fixed effects increase its magnitude. Table 2 shows
these results. Qualitatively, the same findings hold for the other demographic charac-
teristics we consider, as Tables 9, 10, and 11 in Appendix D show. When including the
belief of similar others across all demographic dimensions jointly, they all have a highly
significantly relationship with individual beliefs, as the last two columns of Table 12 in

17Gender is a particularly appealing similarity feature to illustrate the role of similarity because it does
not depend on people’s choices, as much as, for example, in the case of political affiliation.
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Appendix D illustrates.

Table 2: Similarity Effect by Gender

(1) (2) (3) (4) (5) (6)
Similarity − Network 0.282*** 0.334*** 0.306*** 0.359*** 0.413*** 0.777***

(0.038) (0.028) (0.057) (0.047) (0.052) (0.092)
Similarity − County 0.684*** 0.667*** 0.610*** 0.593*** 0.535*** 0.204***

(0.040) (0.029) (0.043) (0.029) (0.015) (0.056)
County FE No No Yes Yes Yes Yes
Time FE No Yes No Yes Yes Yes
State-Time FE No No No No Yes Yes
County-Time FE No No No No No Yes
Observations 1,910,679 1,910,679 1,910,679 1,910,679 1,910,679 1,910,679
R-squared 0.026 0.026 0.026 0.026 0.027 0.030

Note: The table shows the results of estimating specification (15), where the dependent variable πe
i,d,c,t denotes the inflation expectations

of individual i of gender d in county c at time t. Similarity − Network is the average of inflation expectations of individuals of the same

gender in other counties. Similarity − County is the average of inflation expectations of respondents of the same gender within her/his

own county. Observations are weighted by the number of responses in a county in each period. Standard errors are clustered at the county

level.

Further evidence of the importance of demographic similarity within demographic
groups emerges when the analysis explicitly includes a measure of dissimilarity, or inter-
ference, as in Proposition 3. To do so, we estimate specification (15), but include the
network-weighted expectations of the respectively omitted other demographic group,

∑k ̸=c ωc,kπe
−d,k,t. This term captures dissimilarity. Two results emerge: First, such dissim-

ilarity of others – denoted by “Dissimilarity-Network” – generally has an economically
negligible relationship with individual inflation expectations. It is always smaller than
the similarity effect itself, which continues to be highly significant, always positive and
higher than the point estimates in the baseline with only similarity terms present. Second,
there is a positive, statistically significant difference between the similarity and dissimi-
larity effects across specifications. Table 13 in Appendix D illustrates these findings in
multiple specifications for gender, and Table 14 in Appendix D for all other demographic
characteristics in the analysis.

Viewed through the lens of the model, these dissimilarity results suggest that the be-
liefs of "other others" embody experiences that are perceived to be less relevant than the
experiences shared by "similar others." As a result, the inflation expectations of the “other
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others” affect individual inflation expectations to a much lesser extent relative to the in-
flation expectations of "similar others." Results in the next section further align with these
findings.

4.4 Transmission of Exogenous Shocks through the Network

Applying our third, instrumental-variable approach to identification confirms our pre-
ceding, main findings but also provides further insights: First, inflation expectations of
others shared through the social network bear a positive, causal relationship with in-
dividual inflation expectations, with a somewhat stronger relationship than implied by
a corresponding OLS specification. Second, while this estimate and those in the previ-
ous sections may also be read in light of general stability conditions in models of social
learning (e.g. DeGroot (1974)), the results in this section point beyond a statistical inter-
pretation: Salience embodied in the experiences shared through the social network may
play an additional, marginally destabilizing role for inflation expectations, in line with
Corollary 2. Yet, as we show, on net, expectations of others do not induce instability in
individual inflation expectations (Proposition 4).

The instrumental variable approach taken in this section follows Hajdini et al. (2022a)
and utilizes a shift-share approach, combining cross-county variation in the proportion of
individuals who use cars in their commute to work with monthly fluctuations in national
gas prices. The underlying idea is that areas with a higher intensity of car usage will
experience a more pronounced impact of national gas price shocks, creating exogenous,
county-specific variation. Estimating the following specification, as a first stage, shows
that the instrument indeed affects local inflation expectations:

πe
i,d,c,t = αc(i) + θt + βdPgas,t × Commc(i) + εi,d,c,t, (16)

where, as in the previous section, πe
i,d,c,t denotes the inflation expectations of individual i

in county c with gender d, at time t. Pgas,t denotes the average national price of regular gas
according to the US Energy Information Administration;18 Commc(i) denotes the share of
people who use their own car to commute according to the ACS19; αc(i) denotes a county
fixed effect and θt a time fixed effect. Allowing for differences in the sensitivity to gas

18Our analysis uses the national gas price assuming that local county-level shocks in the cross section
are less likely to influence US demand for gas, and therefore price. This also applies to local policies that
can jointly influence expectations and local gas price. We rely on the fact that, since gas is very tradeable,
its price is correlated across regions following aggregate gas price shocks.

19This measure is not correlated with the weights. Figure 12 in Appendix B.2 shows results for
regression at each county level, results show that for most counties the coefficient is very small and non
statistically different from zero. In addition, a regression that adds all the counties has a very small and
non statistically different from zero coefficient.
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price exposure, βd, is motivated by the results in D’Acunto et al. (2021a), who find that
gender differences in inflation expectations can be explained by gender roles associated
with shopping experiences. In particular, D’Acunto et al. (2021a) show that men tend to
refer more to gasoline prices when they form expectations. That is, gasoline prices are
more salient to men. We estimate this regression specification for the period of February
2021 through July 2023.

Table 3: Cross-Sectional Effect of Gas Price on Expectations

(1) (2) (3) (4) (5) (6)
Pgas,t -0.874** -1.060

(0.375) (0.211)
Commc(i) -7.457*** -8.383***

(1.347) (1.130)
Pgas,t × Commc(i) 3.171*** 3.318*** 3.310*** 3.414*** 3.958*** 0.834**

(0.513) (0.386) (0.444) (0.407) (0.475) (0.379)
County FE No Yes No Yes Yes Yes
Time FE No No Yes Yes Yes Yes
Sample All All All All Men Female
Observations 1,239,680 1,239,680 1,239,680 1,239,680 606,305 632,750
R-squared 0.008 0.012 0.011 0.015 0.014 0.015

Note: Columns (1)-(4) show results from estimating the first-stage specification πe
i,c,t = αc(i) + γt + βPgas,t × Commc(i) + εi,c,t,

where πe
i,c,t denotes the inflation expectations of individual i at time t; Pgas,t denotes the average national price of regular

gas; Commc(i) denotes the share of people who use their own car to commute according to the ACS; and αc(i) and γt are

county and time fixed effects included as appropriate in the first 4 columns. Columns (5) and (6) show the results from

estimating πe
i,d,c,t = αc(i) +γt + βdPgas,t ×Commc(i) + εi,d,c,t, where d ∈ (male, f emale). Observations are weighted by the number

of responses in a county in each period. Standard errors are clustered at the county level.

In line with the well-established impact of gas prices on inflation expectations, esti-
mates across specifications indeed show a positive, highly statistically significant effect
of the instrument on inflation expectations. As Table 3 shows, a one-dollar increase in
the price of gas raises individual-level inflation expectations between 3.171 and 3.414
percentage points in a county where everybody uses their car to commute, relative to
a counterfactual county where nobody uses a car to commute.

In particular, our analysis also exploits demographic differences in the way consumers’
perceive these specific price shocks, providing evidence for model prediction (T.3) about
the salience of experiences in the network amplifying the transmission of information.
How do such differences matter? As D’Acunto et al. (2021a) show at the individual level,
men exhibit a significantly higher sensitivity to local gas prices than women, and men also
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rely more strongly on gas prices to form inflation expectations. The results in Columns 5
and 6 align with these findings: male respondents react more strongly to gas shocks than
women, in places where gas is used more intensively to commute. The estimated coeffi-
cient for men is 3.958 while it is 0.834 for women. Aggregating these salient shocks to the
network level shows that these results also hold at this level, with a coefficient of 1.980 for
men and 0.571 for women, as Columns (1) and (2) of Table 4 show. This difference is sta-
tistically significantly different from zero as a test in Appendix Table 16 formally shows.
Through the lens of our model assumptions, these findings suggest an ϵ > 1.

As a second stage, our analysis uses this exogenous, local variation to implement
our third, instrumental-variable approach that delivers an unbiased estimate for the ef-
fect of inflation expectations of others on individual inflation expectations. To arrive at
this unbiased estimate that addresses any remaining endogeneity issues including the re-
flection problem, we construct the variable Gas_e f f ectd,c,t = β̂dPgas,t × Commc(i), based
on the above equation (16), which contains county-time variation. Then, combining
these exogenous, local shocks and the social network weights to form an instrument,

∑k ̸=c ωc,kGas_e f f ectd,k,t, we estimate variants of the following specification as our main,
instrumental-variable regression:

πe
i,d,c,t = αc(i) + θt + ρ1πe

−i,d,c,t + ρ2 ∑
k ̸=c

ωc,kπe
d,k,t + εi,d,c,t, (17)

where inflation expectations of others have been instrumented accordingly. While time
fixed effects have already been filtered out from the instrument Gas_e f f ectd,c,t, we nonethe-
less include a time fixed effect θt in some specifications in this instrumented regression.
As in the previous exercises that took into account “other factors”, this analysis also takes
into account average county-gender inflation expectations, πe

−i,d,c,t, which excludes the
respondent’s own expectations.20 Overall, all these specifications show whether or not
variation in the inflation expectations of others in distant counties due to local gas price
shocks in other counties causally affects individual expectations in a given county.

20Alternatively, we run regressions where we control for the own-county/demographic gas effect
Gas_e f f ectd,c,t. Appendix D, Table 15 presents the findings, which are very similar.
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Table 4: Effect of Gas Price Variation in the Social Network on
Inflation Expectations

(1) (2) (3) (4)
∑k ̸=c ωc,kGas_e f f ectc,d,t 1.980*** 0.571***

(0.200) (0.190)
∑k ̸=c ωc,kπe

d,k,t 0.359*** 0.491***
(0.047) (0.088)

πe
−i,d,c,t 0.532*** 0.365*** 0.593*** 0.561***

(0.023) (0.012) (0.029) (0.040)
Sample Men Female All All
Time FE Yes Yes Yes Yes
County FE Yes Yes Yes Yes
Regression OLS OLS OLS IV
F-Test - - - 1459
Observations 882,338 1,028,341 1,910,679 1,910,679
R-squared 0.020 0.018 0.026 0.012

Note: This table shows results from estimating two specifications. Columns (1) and (2) for πe
i,d,c,t =

αc + θt + α1πe
−i,d,c,t + βs ∑k ̸=c ωc,kGas_e f f ectd,k,t + εi,d,c,t,. Column (3) shows the results for πe

i,d,c,t =

αc + ρ1πe
−i,c,t + ρ2 ∑k ̸=c ωc,kπe

d,k,t + εi,d,c,t. Column (4) runs the same specification as for Column (3), but

instruments ∑k ̸=c ωc,kπe
d,k,t with ∑k ̸=c ωc,kGas_e f f ectd,k,t. πe

i,d,c,t denotes the inflation expectations of indi-

vidual i of gender d in county c at time t; πe
−i,d,c,t inflation expectations of respondents of demographic d

in county c at time t excluding individual i; and πe
d,k,t gender d inflation expectations in county k at time

t; Gas_e f f ectd,k,t denotes the gas effect variable constructed as described in the text; and αc and γt are

county and time fixed effects. Observations are weighted by the number of responses in a county in each

period. Standard errors are clustered at the county level.

Here, our main finding – but now with a causal underpinning – is confirmed: When
we apply the instrumental variables approach, the coefficient estimate on the inflation ex-
pectations of others is positive, statistically significantly different from zero, and increases
compared to the coefficient estimate from a corresponding OLS regression. As shown in
the previous sections, an OLS baseline estimate of the network effect that takes into ac-
count fixed effects is 0.359 (replicated in Column (3)). The corresponding IV coefficient is
0.491, more than a third higher (Column (4)). Besides establishing causality, instrumenta-
tion – by virtue of the nature of the instrument – also provides a glimpse into the content
of the information that flows through the social network and the memories recalled (Bor-
dalo et al. (2023)): Gas prices are a salient object that affects inflation expectations, and
social networks tap such salient experiences from the memory database.

Finally, the unbiased estimates from the instrumental variable approach have two im-
plications for stability: First, on net, expectations of others do not induce instability in
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individual inflation expectations. As summarized by model prediction (T.3) and in line
with general stability conditions of social learning models like DeGroot (1974), a one-
time county-specific shock to inflation expectations can destabilize inflation expectations
in all the other counties only if the effect of shocks is bigger than unity, | β |≥ 1. How-
ever, according to our estimates, even if we add together in the calculation of the sta-
bility coefficient β both own-county effects and the effects from other counties, that is,
β = ρ1ωii + ρ2(1 − ωii) with own-county weights of ωii = 0.39, such a calculation yields
only an effective β = 0.519 < 1: Social networks have no destabilizing effect on individual
inflation expectations.

Second, on the margin, the results may suggest a destabilizing effect of salient experi-
ences. Why? As discussed above, the instrument captures variation due to salient, local
exogenous gas price shocks; instrumentation results in a higher estimate relative to an
OLS specification. While such an increase can simple originate from an elimination of
bias rather than salience captured by the instrument, it can also suggest that a potentially
additional, marginally destabilizing role for inflation expectations in line with Corollary
2 and summarized by model prediction (T.4). In this latter case, an important policy im-
plication emerges: As suggested in Coibion et al. (2020c), effective communication from
policymakers that emphasizes inflation as a broad rather than as a salient, good-specific
or salient, local phenomenon can help reduce the feedback effects of social networks.

5 Conclusion
Our analysis brings to the fore the idea that experiences shared through social net-

works can have an impact on the formation of inflation expectations. Our theoretical
analysis incorporates this idea into the framework of Bordalo et al. (2023) of memory and
recall. The model shows that social networks can affect expectations, and provides a set of
testable implications. These explicitly allow for a role of demographic similarity and in-
clude stability conditions for the propagation of shocks to inflation expectations in social
networks. In particular, unlike in simpler models of network stability such as DeGroot
(1974), our model allows for a role of salience in the stability conditions.

Our empirical analysis shows that these predictions, when viewed through the lens
of inflation expectations, bear relevance in the empirical environment. In particular, to
do so, we take advantage of a novel, large dataset that merges the inflation expecta-
tions of around 2 million US consumers with their local index of social connectedness.
Our results indicate that social networks matter for inflation expectations, in particular
when individuals share similar demographic characteristics. These findings emerge un-
der three different approaches to identification, all of which also imply overall stability
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in the transmission of shocks to inflation expectations over the social network. However,
salience amplifies their transmission and marginally implies decreased stability.

These findings open up new avenues for exploring the formation of inflation expecta-
tions in the context of social networks. For example, future work remains in the context of
stability and multiple equilibria, regarding the role of network super-nodes, or the trans-
mission of shocks from different regions and of different sizes. Such future work may
benefit policymakers who aim to keep inflation expectations anchored, but currently do
not assign a role to social networks.
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Appendix

A Proofs

A.1 Proof of Proposition 1

The mean of the perceived probability of high inflation is given by

E (pi(H)) = E

(
Ri(H)

Ri(H) + Ri(L)

)
By the central limit theorem, we have that

zH
i =

Ri(H)− Tiri(H)√
Ti

∼ N(0,ri(H)(1 − ri(H))

Therefore,
Ri(H)

Ri(H) + Ri(L)
=

zH
i /

√
Ti + ri(H)

zH
i /

√
Ti + ri(H) + zL

i /
√

Ti + ri(L)

and

lim
Ti→∞

Ri(H)

Ri(H) + Ri(L)
= lim

Ti→∞
pi(H) =

ri(H)

ri(H) + ri(L)

If the recall probability of the high-inflation regime increases, then the perceived proba-

bility of regime H increases leading to an increase inflation expectations.

A.2 Proof of Proposition 2

Consider individual j’s recall probability of hypothesis k

r̂i(k) =
γiSk

i + (1 − γi)Sk
δi.

γiSi + (1 − γi)Sδi.

(A.1)

Then, the response of r̂i(k) to a change in Sk
δi.

is given by

∂r̂i(k)
∂Sk

δi.

= (1 − γi)
γiS

K\k
i + (1 − γi)S

K\k
δi.

γiSi + (1 − γi)Sδi.

≥ 0 (A.2)

Clearly, ∂r̂i(k)
∂Sk

δi.

> 0 if γi < 1 and ∂r̂i(k)
∂Sk

δi.

= 0 if γi = 1.
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A.3 Proof of Proposition 3

Let r̂i(k)′ be the response of the recall probability to the “experience” shock composed of a

total of M k-relevant experiences, where M ≥ 2. Then, the effect of the shock on the recall

probability when the shock hits only the common-demographics network is given by

r̂i(k)′ = (1 − γi)
γiS

K\k
i + (1 − γi)S

K\k
δi.

γiSi + (1 − γi)Sδi.

(
M−n

∑
m=1

∂Sk
δi.=1

∂em

)
> 0 (A.3)

Moreover, the effect of the shock on the recall probability when the shock hits both the

common- and other-demographics network is given by

r̂i(k)′ = (1 − γi)
γiS

K\k
i + (1 − γi)S

K\k
δi.

γiSi + (1 − γi)Sδi.

(
M−n

∑
m=1

∂Sk
δi.=1

∂em
+

M

∑
m=M−n+1

∂Sk
δi.=0

∂em

)
> 0 (A.4)

where Sk′
δi.
= ωSk′

δi.=1 + (1 − ω)Sk′
δi.=0. Clearly, the effect in (A.3) is guaranteed to be higher

than the one in (A.4) if
∂Sk

δi.=1
∂e >

∂Sk
δi.=0
∂e for any k-relevant experience e.

A.4 Proof of Proposition 4

To simplify notation, let r̂i(k) = r̂i for any i ∈ {1,2}. Suppose we perturbate r̂1 away from

r̂∗∗1 . Then, the chain of responses in every step τ is given by

τ = 1 :
∂r̂2

∂r̂1
= f ′(r̂1)

τ = 2 :
∂r̂1

∂r̂2
= g′( f (r̂1)) = g′(r̂2) f ′(r̂1)

τ = 3 :
∂r̂2

∂r̂1
= f ′(g( f (r̂1))) = f ′(r̂1)( f ′(r̂1)g′(r̂2))

τ = 4 :
∂r̂1

∂r̂2
= g′( f (g( f (r̂1)))) = ( f ′(r̂1)g′(r̂2))

2

...

(A.5)

where τ = 1 indicates the response of r̂1 on impact. Clearly, if f ′(r̂1)( f ′(r̂1)g′(r̂2)) < 1,

the chain of reaction will dissipate quickly and recall probabilities would revert back

to equilibrium (r̂∗∗1 , r̂∗∗2 ). By contrast, if f ′(r̂1)( f ′(r̂1)g′(r̂2)) > 1, the responses of recall

probabilities increase as we progress through the chain of reaction, implying that recall

probabilities would just get far away from the equilibrium (r̂∗∗1 , r̂∗∗2 ).
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A.5 Proof of Corollary 2

We simplify notation and re-write the recall probabilities of hypothesis k for individuals

1 and 2 as

r̂1 =
γx1 + ϵ(1 − γ)x2

γx1 + ϵ(1 − γ)x2 + y
(A.6)

r̂2 =
γx2 + ϵ(1 − γ)x1

γx2 + ϵ(1 − γ)x1 + y
(A.7)

where xj = Sk
j , y = SK\k, for any j ∈ {1,2} and i ̸= j. Isolating x1 from (A.6), we can write

x1 as x1 =
(x2ϵ(1−γ)+y)r̂1−ϵ(1−γ)x2

γ(1−r̂1)
. Substituting for x1 into (A.7), we get

r̂2 =
γx2 + ϵ(1 − γ) (x2ϵ(1−γ)+y)r̂1−ϵ(1−γ)x2

γ(1−r̂1)

γx2 + ϵ(1 − γ) (x2ϵ(1−γ)+y)r̂1−ϵ(1−γ)x2
γ(1−r̂1)

+ y

=
(ϵ(1 − γ)y + (ϵ(1 − γ)− γ)(ϵ(1 − γ) + γ)x2) r̂1 − (ϵ(1 − γ)− γ)(ϵ(1 − γ) + γ)x2

((ϵ − γ)y + (ϵ(1 − γ)− γ)(ϵ(1 − γ) + γ)x2 − γy) r̂1 − (ϵ(1 − γ)− γ)(ϵ(1 − γ) + γ)x2 + γy
(A.8)

We proceed in a similar fashion to express r̂i as a function of r̂j. Hence, the recall proba-

bility of individual j can be written as a function of the recall probability of individual i:

r̂j = f (r̂j) =
ajr̂i + bj

cjr̂i + dj

where aj = ϵ(1 − γ)y + (ϵ(1 − γ)− γ)(ϵ(1 − γ) + γ)xj, bj = −(ϵ(1 − γ)− γ)(ϵ(1 − γ) +

γ)xj, cj = aj − γy, and dj = bj + γy for any j ∈ {1,2}. Similarly, the recall probability of r̂i

as a function of r̂j

r̂i =
ai r̂j + bi

ci r̂j + di
⇒ r̂j = g(r̂j) =

bi − di r̂i

ci r̂i − di

Without loss of generality, let j = 2. An equilibrium occurs wherever f intersects with

g, that is whenever the following equation has a solution

h(r̂1) = (c2a1 + d2c1)︸ ︷︷ ︸
φ2

r̂2
1 + (c2b1 + d1d2 − b2c1 − a1a2)︸ ︷︷ ︸

φ1

r̂1 + (−b2d1 − a2b1)︸ ︷︷ ︸
φ0

= 0

Note that h(1) = 0, hence r̂1 = r̂2 = 1 is always an equilibrium. Moreover, one can show

that φ2 = −y(ϵ(1 − γ) − γ)(ϵ(1 − γ) + γ)(y + γx1 + ϵ(1 − γ)x2); φ0 = −y(ϵ(1 − γ) −
γ)(ϵ(1 − γ) + γ)(γx1 + ϵ(1 − γ)x2); and φ1 = −(φ2 + φ0). φ2 and φ0 share the same
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sign, thus, if h is convex then h(0) > 0 and if h is concave, then h(0) < 0. It is straight-

forward to show that h(r̂1) = 0 for r̂1 = 1 and r̂1 =
φ0
φ2

= γx1+ϵ(1−γ)x2
γx1+ϵ(1−γ)x2+y ∈ (0,1), therefore,

there is always an equilibrium (r̂∗∗1 , r̂∗∗2 ), such that 0 < r̂∗∗1 , r̂∗∗2 < 1.

We now analyze the features of f and g that are relevant for the stability properties of

(r̂∗∗1 , r̂∗∗2 ), and consider two cases: i) 0 < ϵ < γ
1−γ and ii) ϵ > γ

1−γ .

i) 0 < ϵ < γ
1−γ . In this case, b1,b2,d1,d2 > 0; c1, c2 < 0; f (r̂1) > 0, for any r̂1 ∈ [0,1]

and f (r̂1) is convex with f (0) > 0. On the other hand, g(r̂1) is a concave function for

r̂1 > −a1/c1 with −a1/c1 < 1. Moreover, g has a vertical asymptote at r̂1 = −a1/c1 and

g = 0 for r̂1 = b1/d1. To ensure that g is continuous for any r̂1 ∈ [0,1], we assume that

the vertical asymptote occurs at r̂1 = −a1/c1 < 0, implying that a1 < 0. Therefore, in this

case, there are only 2 equilibria 0 < r̂∗∗1 , r̂∗∗2 < 1 and r̂∗∗∗1 = r̂∗∗∗2 = 1. Because f is convex

whereas g is concave at their intersection with (r̂∗∗1 , r̂∗∗2 ), this equilibrium is stable.

ii) ϵ > γ
1−γ . In this case, b1,b2 < 0; a1, a2, c1, c2 > 0. Moreover, f has a vertical asymp-

tote at r̂1 = −d2/c2 and f = 0 for r̂1 = −b2/a2 > 0. To ensure that f is continuous for any

r̂1 ∈ [0,1], we assume that the vertical asymptote occurs at r̂1 =−d2/c2 < 0, implying that

d2 > 0. Therefore, f > 0 for any r̂1 ∈ (−b2/a2,1], implying that

f (r̂1) = max
[

0,
a2r̂1 + b2

c2r̂1 + d2

]
Furthermore, f is concave. On the other hand, g is convex and, similar to f , it can also

take negative values for certain r̂1 ∈ (0,1), implying that

g(r̂1) = max
[

0,
−d1r̂1 + b1

c1r̂1 − a1

]
and that there are three equilibria in this case, r̂∗1 , r̂∗2 = 0, 0 < r̂∗∗1 , r̂∗∗2 < 1 and r̂∗∗∗1 = r̂∗∗∗2 = 1.

Because g is convex whereas f is concave at their intersection with (r̂∗∗1 , r̂∗∗1 ), this equilib-

rium is unstable.
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A ONLINE APPENDIX: The Reflection Problem

A.1 Baseline

Consider the following generic regression specification:

πe
t = α + βΩπe

t + εt

where πe
t =
[
πe

1t πe
2t ... πe

Nt

]′
embeds inflation expectations in county 1 through county

N, εt =
[
ε1t ... εNt

]′
denotes a set of county-specific i.i.d. shocks to inflation expecta-

tions such that εit ∼ N (0,σ2
i ) for any i ∈ {1,2, ..., N}, α =

[
α1 ... αN

]′
denotes a vector

of constants (county fixed effects), β denotes a scalar, and Ω is an N × N matrix with

0-diagonal and with row elements summing to 1. We re-write the equation above as

πe
t − π̄︸ ︷︷ ︸

yt

= β [Ω(πe
t − π̄)]︸ ︷︷ ︸

Ωyt

+εt

where π̄ =
[
π̄e

1 π̄e
2 ... π̄e

N

]′
. Note that yt = (I − βΩ)−1 εt = Mεt. Let β̂ be the OLS

estimate of β. Then,

β̂ = β +
[
(y′tΩ

′Ωyt)
−1(y′tΩεt)

]
= β +

[
(ε′tM

′Ω′ΩMεt)
−1(ε′tM

′Ωεt)
]

where

(ε′tM
′Ωεt) =

[
ε1t ε2t ... εNt

]


m11 m21 ... mN1

m12 0 ... mN2

... ... ... ...
m1N m2N ... mNN




0 ω12 ... ω1N

ω21 0 ... ω2N

... ... ... ...
ωN1 ωN2 ... 0




ε1t

ε2t

...
εNt



=
[
∑i m1iεit ∑i m2iεit ... ∑i mNiεit

]


∑i ̸=1 ω1iεit

∑i ̸=2 ω2iεit

...

∑i ̸=N ωNiεit

 =
N

∑
j=1

(
∑
i ̸=1

ωjimjiσ
2
i

)
̸= 0
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If β = 0, then yt = εt and β̂ =
[
(ε′tΩ

′Ωεt)−1(ε′tΩεt)
]
, where

(ε′tΩεt) =
[
ε1t ε2t ... εNt

]


0 ω12 ... ω1N

ω21 0 ... ω2N

... ... ... ...
ωN1 ωN2 ... 0




ε1t

ε2t

...
εNt

=
[
ε1t ε2t ... εNt

]


∑i ̸=1 ω1iεit

∑i ̸=2 ω2iεit

...

∑i ̸=N ωNiεit

= 0

with the final equality following from the fact that the error terms are uncorrelated across

counties. Therefore, if β = 0, the OLS estimate of it should also be equal to 0.

A.2 Time Fixed Effects

Now suppose the true data generating process is given by the more general regression

specification with time and county fixed effects:

πe
t = α + γtLN + βΩπe

t + εt (A.1)

where LN = 1N×1 is a vector of 1s of length N, γt is the time fixed effect, and all the

other variables are as defined in Appendix A.1. Let π̄N. =
1
T

[
∑T

t=1 πe
1t ∑T

t=1 πe
2t ... ∑T

t=1 πe
Nt

]′
,

π̄.t =
(

1
N ∑N

n=1 πe
nt

)
LN, and π̄.. =

(
1

NT ∑N
n=1 ∑T

t=1 πe
nt

)
LN. Then, following a strategy sim-

ilar to Wallace and Hussain (1969), we re-write the equation above as

πe
t − π̄.t − π̄N. + π̄..︸ ︷︷ ︸

yt

= β [Ω(πe
t − π̄.t − π̄N. + π̄..)]︸ ︷︷ ︸

Ωyt

+εt

Note that yt = (I − βΩ)−1 εt = Mεt. Let β̂ be the OLS estimate of β, and as shown in

Appendix A.1,

β̂ = β +
[
(y′tΩ

′Ωyt)
−1(y′tΩεt)

]
= β +

[
(ε′tM

′Ω′ΩMεt)
−1(ε′tM

′Ωεt)
]

︸ ︷︷ ︸
bias

What is important to note from the equation above is that even if the econometrician ap-

propriately accounts for the time and county fixed effects (as in the true data generating

process), the estimate of β will suffer from a bias.21

In an alternative exercise, suppose that the true data generating process is given by

21See Lee and Yu (2010) as well for a detailed discussion on the biases that arise in spatial models with
time and individual fixed effects.
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the equation in (A.2), but the econometrician does not account for time fixed effects, that

is, one runs the following regression instead:

πe
t − π̄N.︸ ︷︷ ︸

ŷt

= β [Ω(πe
t − π̄N.)]︸ ︷︷ ︸
Ωŷt

+ut (A.2)

where ut = εt + (I − βΩ)(π̄.t − π̄..) = εt + M−1(π̄.t − π̄..) = εt + M−1xt. Then, the OLS

estimate of β is given by

β̂ = β +
[
(u′

tM
′Ω′ΩMut)

−1(u′
tM

′Ωut)
]

︸ ︷︷ ︸
bias

= β +

[(
(εt + M−1xt)

′M′Ω′ΩM(εt + M−1xt)
)−1(

(εt + M−1xt)
′M′Ω(εt + M−1xt)

)]
︸ ︷︷ ︸

bias

= β +
[(

ε′tM
′Ω′ΩMεt + x′tΩ

′Ωxt
)−1

(
ε′tM

′Ωεt + x′tΩM−1xt

)]
︸ ︷︷ ︸

bias

where the third equality follows from the fact that xt must be uncorrelated with εt. Now

the bias is similar to what we identified in Appendix A.1, with the additional terms com-

ing from the fact that we are not accounting for time fixed effects. What this Appendix

highlights is that, even if one appropriately accounts for all fixed effects (time and county),

the reflection problem still arises.

A.3 Time Fixed Effect with Constant Weights and Bias

Here, we explicitly show the OLS estimate of the network effect under different assump-

tions for the weights matrix and demonstrate how the inclusion of the time fixed effect

affects the results.

A.3.1 No Time Fixed Effect

We start with the basic problem

πe
t = βΩπe

t + εt (A.3)
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with

Ω =


0 ω12 ... ω1N

ω21 0 ... ω2N

... ... ... ...
ωN1 ωN2 ... 0


This setup captures the main estimated specification in the text.

Then, we have that

πe
t = (I − βΩ)−1 εt

and

βOLS =
[
(Ωπe

t )
′ (Ωπe

t )
]−1

(Ωπe
t )

′ πe
t

or

βOLS =

[(
Ω (I − βΩ)−1 εt

)′(
Ω (I − βΩ)−1 εt

)]−1(
Ω (I − βΩ)−1 εt

)′
πe

t

A.3.2 With Time Fixed Effect

We now define the matrix

P =


1
N

1
N ... 1

N
1
N

1
N ... 1

N
... ... ... ...
1
N

1
N ... 1

N


So the average expectation at each period of time is:

Pπe
t = βPΩπe

t + Pεt

So a regression with time fixed effects is equivalent to running a regression over this

equation:

(I − P)πe
t = β (I − P)Ωπe

t + (I − P)εt

or

πe,TFE
t = β (Ω − PΩ)πe

t + εe,TFE
t (A.4)

Then,
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βOLS,TFE =
[
((Ω − PΩ)πe

t )
′ ((Ω − PΩ)πe

t )
]−1

((Ω − PΩ)πe
t )

′ πe,TFE
t

or

βOLS,TFE =
[
((Ω − PΩ)πe

t )
′ ((Ω − PΩ)πe

t )
]−1

(πe
t
′ (Ω − PΩ)′ (I − P)πe

t

Then,

βOLS,TFE =
[
πe

t
′ (Ω − PΩ)′ (Ω − PΩ)πe

t
]−1

πe
t
′ (Ω − PΩ)′ (I − P)πe

t

Special Case:

To build intuition and derive a closed-form expression for β, let’s assume an extreme

case where the network is constant and equal for everybody, where the weights are 1
N−1 ,

so

Ω =


0 1

N−1 ... 1
N−1

1
N−1 0 ... 1

N−1

... ... ... ...
1

N−1
1

N−1 ... 0


It is direct to show that PΩ = 1

N ∗ P, then (Ω − PΩ) = (Ω − P). Further, it is direct to

show that (I − P) = (1 − N) ∗ (Ω − P) or (I − P) = (1 − N) ∗ (Ω − PΩ). We replace this

value in the definition if βOLS,TFE:

βOLS,TFE =
[
πe

t
′ (Ω − PΩ)′ (Ω − PΩ)πe

t
]−1

πe
t
′ (Ω − PΩ)′ (I − P)πe

t

βOLS,TFE =
[
πe

t
′ (Ω − PΩ)′ (Ω − PΩ)πe

t
]−1

πe
t
′ (Ω − PΩ)′ (1 − N) ∗ (Ω − PΩ)πe

t

βOLS,TFE = (1 − N) ∗
[
πe

t
′ (Ω − PΩ)′ (Ω − PΩ)πe

t
]−1

πe
t
′ (Ω − PΩ)′ (Ω − PΩ)πe

t

Then,

βOLS,TFE = −(N − 1)

We can see that in this case, the βOLS,TFE is constant, negative and does not depend on

the actual value of β.

The network structure in our case is not constant, so that case just works as a bench-

mark. To explore the potential biases from the potential inclusion of the time fixed effect,
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we simulate data and a network structure. The network structure will come from a Beta

distribution with difference parameters. In one case, the network will be built from draw-

ing from a Beta(1,1) or a uniform distribution, second from a Beta(1,10) and third from a

Beta(1,20), in which case the distribution will be moving more to an extreme value distri-

bution, with less common nodes. The data generating process comes from the structure

πe
t = (I − βΩ)−1 εt

where εt =
[
ε1,t, ε2,t, ..., εN,t

]′
will have two forms, one where εI

t =
[
ε1t ... εNt

]′
denotes

a set of county-specific i.i.d. shocks to inflation expectations such that εit ∼ N (0,σε2).

In the other case, we also have a case where there is a common time shock, so εT
t =

εI
t + ut

⊗
1N,1, with ut =

[
u1,u2, ...,uT

]′
, a Tx1 matrix that contains time shocks with

ut ∼ N (0,σ2
u). We use σε = 1 and σu = 0.1, so σε

σu
is similar to what the variation in time

fixed effects in the data look like compared to the residuals on the data from that regres-

sion. We use β = 0.3, N = 300 and T = 100 and simulate 100 times, keeping the network

constant. Figure 5 shows the results of the simulation without time FE for each formation

process of the network and Figure 6 shows the result with time FE.
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Figure 5: Regression Results without Fixed Effects

Note: The figure shows the results of the regression (A.3) of the data simulated as described in the text. The first row shows results
of simulations without a common time shock. The second row shows results of a simulation with a common time shock that is 0.1
the size of the individual shock and the last row shows results of a simulation with a common time shock that is 0.5 the size of the
individual shock. All regression do not include a time fixed effect.
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Figure 6: Regression Results with Fixed Effects

Note: The figure shows the results of the regression (A.4) of the data simulated as described in the text. The first row shows results
of simulations without a common time shock. The second row simulation with a common time shock that is 0.1 the size of the
individual shock and the last row shows results of a simulation with a common time shock that is 0.5 the size of the individual shock.
All regression include a time fixed effect.

We can see that, from the extreme case of complete homogeneity in the network, to the

uniform distribution case, there are some similarities. When there is no time shock (top

left panel in both figures), the OLS without a fixed effect is positively biased, but not by

much. In the case of the time FE, there is a strong negative bias that leads the coefficient

to negative values. This effect is present in the uniform distribution case, regardless of

whether there is a time common shock or not. This effect is smaller when the distribution

of the network changes. We can see that in the case of the Beta(1,100) distribution, the

bias is still negative, but very close to the true value. With a time shock, the regression

without a time fixed effect is biased and goes to 1.

These results speak directly to the results in Tables 1 and 6. Column (5) of Table 1 is

similar to Columns (2), (4) and (6) in Table 6: All regressions have time fixed effects, but

in Columns (2), (4) and (6) of Table 6 we drop counties that are spatially close. By doing

50



that, we are effectively moving the distribution of shares closer to an extreme value of

one, as we are inputting a zero share to a group of counties in the common network. In

those cases, the regression with the time fixed effect results in a less biased estimate, even

when there is no aggregate time shock. Something similar happens in Section 4.3, when

we split the sample by demographics. Because of these issues, we use the first OLS results

to show the importance of the network, but the results in Section 4.4, where we use an

instrumental variable approach, using county and gender variation, will be the coefficient

that would help us to obtain the unbiased estimate.

B Additional Figures

B.1 Social Connectedness Weights: Examples

We consider the social connectedness of Cuyahoga County, where Cleveland, Ohio is lo-

cated, with other counties across the United States. Figure 7 illustrates this social connect-

edness through a heat map depicting the weights (ωc,k) for c = Cleveland. In Appendix

B, we present similar maps for other counties. The color scheme ranges from light yel-

low to red, with red depicting counties that hold greater social significance for Cleveland.

We observe three distinct patterns. First, as expected, geography plays a significant role,

with Cleveland showing stronger connections to nearby counties. Second, interestingly,

we also observe robust social links with more distant counties. For instance, individuals

residing in Hillsborough, Florida (Tampa) and Clark County, Nevada (Las Vegas) hold

importance for Cleveland individuals. Third, there is substantial heterogeneity in social

connectedness. Even neighboring counties show varying degrees of influence on Cleve-

land. This is the kind of variability that we exploit in the paper.
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Figure 7: Social Connectedness of Cleveland to Other Counties (ωc=Cleveland,k)

Exposure of Cleveland to other counties

Source: Facebook SCI Weights
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Note: The yellow-to-red color scale represents the degree to which Cleveland is socially connected to other counties, based on

ωCleveland,k . Red indicates higher ωCleveland,k . Source: Social Connectedness Index

consider the social connectedness of each county in the US to Cuyahoga county (where

Cleveland, OH is located). The heat map in Figure 8 shows the weights ωck for k =

Cleveland. In Appendix B, we include similar maps for other counties. We assign col-

ors ranging from light yellow to red, with red counties being those that are more socially

important for Cleveland. Three patterns emerge. First, not surprisingly, geography plays

an important role. Individuals living in counties near Cuyahoga are more likely to be

connected to individuals living in Cuyahoga. Second, however, we also observe strong

social links for counties that are farther away. For example, Cuyahoga county is relatively

important to individuals living in Hillsborough, Florida (Tampa) and Clark County (Las

Vegas), Nevada. All of this relative to the importance of Cuyahoga for others. Third,

there is substantial heterogeneity in the social connectedness to a county. Cuyahoga is

relatively important for some populated counties (such as Wayne, Michigan or Fulton,

Georgia), but not too much for others (such as San Francisco, CA).22

In reverse, we also present the social connectedness of other counties to Cuyahoga
22This analysis is relative to the average importance of Cuyahoga to the rest. For example, Clark county

might have a share of connections to Cuyahoga that is high for Cuyahoga, but small for more connected
counties, such as Los Angeles, CA.
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County, Ohio. The heat map in Figure 8 shows the weights ωc,k for k = Cleveland. Again,

as in the illustration above, three patterns emerge: geography plays an important role;

counties far away are also socially connected to Cleveland; and there is substantial het-

erogeneity in connectedness. Relative to before, an asymmetry in connectedness stands

out, a general feature of the data that the analysis will subsequently exploit as a source

of variation. We also provide the social Connectedness to three other illustrative exam-

ples: Cambridge (Middlesex County), Miami (Miami-Dade County), and Los Angeles

(Los Angeles County). We observe similar patterns.

Figure 8: Social Connectedness of Each County to Cleveland (ωc,Cleveland)

Social Connectedness to Cleveland

Source: Facebook SCI Weights
0 500 1000 1500 km
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0.00016 to 0.00019
0.00019 to 0.00025
0.00025 to 0.00037
0.00037 to 0.10662

Cuyahoga County 
(Cleveland)

Note: The yellow-to-red color scale represents the degree to which counties are socially connected to Cleveland, based on ωc,Cleveland.

Red indicates higher ωc,Cleveland. Source: Social Connectedness Index

Below we show similar maps for other counties such as Cambridge, Miami, and Los

Angeles.
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Figure 9: Social Connectedness of Each County to Cambridge (ωc,Cambridge)

  Cambridge

Source: Facebook SCI Weights
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Note: The yellow-to-red color scale represents the degree to which counties are socially connected to Cambridge, based on ωc,Cambridge.

Red indicates higher ωc,Cambridge. Source: Social Connectedness Index

54



Figure 10: Social Connectedness of Each County to Miami (ωc,Miami)

Social Connectedness to Miami

Source: Facebook SCI Weights
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Note: The yellow-to-red color scale represents the degree to which counties are socially connected to Miami, based on ωc,Miami . Red

indicates higher ωc,Miami . Source: Social Connectedness Index
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Figure 11: Social Connectedness of Each County to Los Angeles (ωc,LA)

Facebook SCI Weights

Source: Facebook Social Connectedness Weights
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Note: The yellow-to-red color scale represents the degree to which counties are socially connected to Los Angeles, based on ωc,LA.

Red indicates higher ωc,LA. Source: Social Connectedness Index
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B.2 Other Additional Figures

Figure 12: Correlation between SCI and Own Car Commuting Shares
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Note: The figure shows results of regressions where the dependant variables are the weights in a given county and the independent

variable is the share of households that use their own car to commute. The blue dots are the point estimates and the grey lines

represent 99 percent confident intervals.

C Additional Evidence: County-Level Evidence
At the county level, we find strong, consistent evidence for the importance of the social

network for the expectations formation process. We obtain these results from estimating

variants of the following equation:

πe
c,t = αc + γt + β ∑

k ̸=c
ωc,kπe

k,t + εc,t (C.1)
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where πe
c,t denotes the average inflation expectations in county c in month t. Weights ωc,k

capture the linkages in the social network between county c and county k. αc denotes a

county fixed effect, γt denotes a time fixed effect. The coefficient β is our main coefficient

of interest. It captures the relationship between inflation expectations, πe
c,t, and inflation

expectations in the social network, ∑k ̸=c ωc,kπe
k,t. All estimated specifications of equation

C.1 cluster standard errors at the county level.

Various combinations of the fixed effects, restricting the sample to counties with more

than 10 observations, and weighting by the number of responses per period make up our

specifications. Table 5 lists the different specifications and associated estimates of β across

its columns. Column 1 presents a baseline without county and time fixed effects. Column

5 includes county and time fixed effects. It shows a positive relationship between local

inflation expectations and inflation expectations in counties connected through the social

network. Specifically, a 10 percentage point increase in network-weighted inflation expec-

tations in other counties is statistically significantly associated with an increase between

0.3 and 6.4 percentage points in a county’s inflation expectations. The ample range of the

point estimate is explained by the fixed effects used and the amount of variation that take

out, when the network contains common nodes. These results show that the expectations

of others matter when individuals form expectations.

Table 5: Network Effect at the County Level

(1) (2) (3) (4) (5) (6)
Expectations of Others 0.644*** 0.268*** 0.619*** 0.274*** 0.046** 0.032*

(0.019) (0.017) (0.019) (0.016) (0.018) (0.017)
Sample N>10 All N>10 All N>10 All
Weights Yes No Yes No Yes No
County FE No No No Yes Yes Yes
Time FE No No No No Yes Yes
Observations 29,465 74,534 29,268 74,488 29,268 74,488
R-squared 0.125 0.007 0.384 0.173 0.433 0.188

Note: The table shows the results of regression (C.1), where the dependent πe
c,t is the average inflation expectations of a county

c at time t. Columns (1), (3), and (5) uses only counties at times where they have at least 10 observations (N > 10) and weights
the regression by the number of responses in each period (Weights = Yes). Standard errors are clustered at the county level.

Estimating all other specifications confirms this finding. Across specifications, beliefs

in the network turn out to matter when individuals form expectations.

58



D Other Additional Tables
First, we explore whether our main results are explained by proximity in space. In

Table 6 we repeat our main analysis excluding nearby counties from the network. We

find that even inflation expectations from distant locations are an important determinant

of an individual’s inflation expectations. In particular, the main coefficient increases com-

pared to the benchmark estimate. In Appendix A.3 we show that incorporating time fixed

effects can introduce a bias that attenuates the coefficient, particularly in scenarios charac-

terized by a homogeneous network structure. Hence, the increase in the main coefficient

is consistent with the fact that when we exclude inflation expectations in nearby counties,

we induce greater heterogeneity in the network, which reduces this attenuation bias.23

Table 6: Effect of Removing Close Counties on Inflation Expectations

(1) (2) (3) (4) (5) (6)
Expectations of Others 0.282*** 0.352** 0.280*** 0.281** 0.281*** 0.291**

(0.089) (0.149) (0.090) (0.130) (0.089) (0.130)
County Expectations 0.590*** 0.554*** 0.591*** 0.556*** 0.591*** 0.556***

(0.065) (0.047) (0.066) (0.048) (0.065) (0.048)
Distance >200m >200m >250m >250m >300m >300m
County FE Yes Yes Yes Yes Yes Yes
Time FE No Yes No Yes No Yes
Observations 1,926,635 1,926,635 1,926,635 1,926,635 1,926,635 1,926,635
R-squared 0.017 0.017 0.017 0.017 0.017 0.017

Note: The table shows the results of regression (14), where the dependent πe
i,c,t is the inflation expectations of individual i who answers

from county c at time t. Observations are weighted by the number of responses in a county in each period. We build a network excluding
counties that are less than a certain amount of miles from the individual’s county. Standard errors are clustered at the county level.

23The result is tied to the following intuition: Inclusion of a time fixed effect is equivalent to filtering
out average inflation expectations of respondents, which is similar to estimating a network coefficient,
only with different weights. By removing nearby counties from the data underlying the estimation of the
second coefficient, we are making the two fixed effects dissimilar. It then turns out that this change can
reduce the attenuation bias in the coefficient on expectations in the social network.
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Table 7: County Demographic Controls

Sh Foreign PC Income Sh Black Sh Hisp Sh White NH Pov Rate Biden Sh
Exp of Others 0.337*** 0.326*** 0.234*** 0.288*** 0.097*** 0.243*** 0.331***

(0.032) (0.062) (0.055) (0.064) (0.024) (0.032) (0.427)
County Exp 0.555*** 0.551*** 0.583*** 0.564*** 0.565*** 0.564*** 0.555***

(0.036) (0.022) (0.048) (0.048) (0.054) (0.038) (0.285)
County FE Yes Yes Yes Yes Yes Yes Yes
Time FE Yes Yes Yes Yes Yes Yes Yes
Time-Dem FE Yes Yes Yes Yes Yes Yes Yes
Observations 1,926,282 1,926,282 1,926,282 1,926,282 1,926,282 1,926,276 1,920,803
R-squared 0.017 0.017 0.017 0.017 0.017 0.017 0.017

Note: The table shows the results of a version of regression (14), where the dependent πe
i,c,t is the inflation expectations of individual i

who answers from county c at time t. The regression includes time fixed effect interacted by demographic characteristics at the county
level. “Sr Foreign” is the share of foreign born individuals at the county level. “PC Income” is the income per capita. “Sh Black”
is the share of black population. “Sh Hisp” is the share of hispanic population. “Sh White NH” is the share of white non-hispanic
population. “Pov Rate” is the poverty rate. All these variables coming from the latest census information at the county level. “Biden
Sh” is the share of votes that Joseph Biden got in the county in the 2020 presidential election. Observations are weighted by the
number of responses in a county in each period. Standard errors are clustered at the county level.

Table 8: Price Network and Social Network

(1) (2) (3) (4) (5) (6) (7)
Price Network 0.231*** 0.046 0.351*** -0.036 -0.043 -0.094* -0.091*

(0.061) (0.084) (0.076) (0.056) (0.055) (0.057) (0.053)
Expectations of Others 0.050** 0.070*** 0.063**

(0.023) (0.025) (0.026)
County Expectations 0.712*** 0.687*** 0.546*** 0.497*** 0.497*** 0.476*** 0.434***

(0.051) (0.038) (0.053) (0.032) (0.032) (0.026) (0.014)
Time FE No Yes No Yes Yes Yes Yes
County FE No No Yes Yes Yes Yes Yes
Demographic FE No No No No No Yes Yes
Demographic-Time FE No No No No No No Yes
Observations 1,277,247 1,277,247 1,277,247 1,277,247 1,277,247 1,276,612 1,276,612
R-squared 0.012 0.012 0.012 0.013 0.013 0.029 0.031

Note: The table shows the results of a version of regression (14), where the dependent πe
i,c,t is the inflation expectations of individual i

who answers from county c at time t. Price network uses a network from Garcia-Lembergman (2020). Expectations of Others uses the
SCI network. Demographics fixed effects are the income, age, politics and gender definitions used in the paper and are at the individual
level. Observation are weighted by the number of responses in a county in each period. Standard errors are clustered at the county level.
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Table 9: Network Effect by Political Affiliation

(1) (2) (3) (4) (5) (6)
Network − Politics 0.273*** 0.225*** 0.259*** 0.166*** 0.169*** 0.264***

(0.022) (0.041) (0.040) (0.031) (0.034) (0.051)
In f − County 0.646*** 0.631*** 0.575*** 0.558*** 0.514*** 0.333***

(0.032) (0.033) (0.031) (0.030) (0.023) (0.037)
County FE No No Yes Yes Yes Yes
Time FE No Yes No Yes Yes Yes
State-Time FE No No No No Yes No
County-Time FE No No No No No Yes
Observations 1,896,092 1,896,092 1,896,092 1,896,092 1,896,092 1,896,092
R-squared 0.022 0.023 0.023 0.023 0.024 0.025

Note: The table shows the results of regression (15), where the dependent variable πe
i,d,c,t is the inflation expectations of individual

i, of political affiliation d, who answers from county c at time t.. The network is defined as all the answers that are for individuals

from the same political affiliation in other counties. In f − County is the average of responses from respondents with the same political

affiliation in her/his own county. Respondents choose between Democrat, Republican, or Independent. Observations are weighted

by the number of responses in a county in each period. Standard errors are clustered at the county level.

Table 10: Network Effect by Income

(1) (2) (3) (4) (5) (6)
Network − Income 0.214*** 0.173*** 0.205*** 0.147*** 0.164*** 0.258***

(0.035) (0.030) (0.052) (0.036) (0.038) (0.069)
In f − Income 0.676*** 0.662*** 0.613*** 0.596*** 0.553*** 0.375***

(0.035) (0.034) (0.036) (0.032) (0.026) (0.049)
County FE No No Yes Yes Yes Yes
Time FE No Yes No Yes Yes Yes
State-Time FE No No No No Yes No
County-Time FE No No No No No Yes
Observations 1,899,700 1,899,700 1,899,700 1,899,700 1,899,700 1,899,700
R-squared 0.024 0.024 0.025 0.025 0.025 0.027

Note: The table shows the results of regression (15), where the dependent variable πe
i,d,c,t is the inflation expectations of individual i,

of income d, who answers from county c at time t. The network is defined as all the answers that are for individuals from the same

income bracket in other counties. In f − Income is the average of responses from respondents in the same income bracket in her/his

own county. Respondents choose between less than 50k, 50-100k, and more than 100k annual income. Observations are weighted by

the number of responses in a county in each period. Standard errors are clustered at the county level.
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Table 11: Network Effect by Age

(1) (2) (3) (4) (5) (6)
Network − Age 0.291*** 0.302*** 0.292*** 0.306*** 0.325*** 0.429***

(0.020) (0.026) (0.032) (0.030) (0.037) (0.041)
In f − Age 0.643*** 0.633*** 0.593*** 0.585*** 0.557*** 0.447***

(0.038) (0.031) (0.037) (0.030) (0.023) (0.035)
County FE No No Yes Yes Yes Yes
Time FE No Yes No Yes Yes Yes
State-Time FE No No No No Yes No
County-Time FE No No No No No Yes
Observations 1,883,123 1,883,123 1,883,123 1,883,123 1,883,123 1,883,123
R-squared 0.032 0.032 0.032 0.032 0.033 0.035

Note: The table shows the results of regression (15), where the dependent variable πe
i,d,c,t is the inflation expectations of individual

i, of age d, who answers from county c at time t.. The network is defined as all the answers that are for individuals from the same

age group in other counties. In f − Age is the average of responses from respondents with the same age group in her/his own

county. Respondents choose between 18-34, 35-44, 45-64, and more than 65 years old. Observations are weighted by the number of

responses in a county in each period. Standard errors are clustered at the county level.
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Table 12: Similarity Effects by Other Demographic Characteristics

(1) (2) (3) (4) (5) (6)
Network-Age 0.316*** 0.363*** 0.465***

(0.035) (0.031) (0.039)
County-Age 0.585*** 0.514*** 0.413***

(0.032) (0.026) (0.032)
Network-Income 0.149*** 0.138** 0.242***

(0.035) (0.054) (0.075)
County-Income 0.608*** 0.506*** 0.325***

(0.020) (0.018) (0.029)
Network-Politics 0.179*** 0.141*** 0.235***

(0.036) (0.035) (0.045)
County-Politics 0.551*** 0.451*** 0.281***

(0.014) (0.015) (0.020)
Network-Gender 0.377*** 0.366*** 0.739***

(0.041) (0.052) (0.091)
County-Gender 0.610*** 0.497*** 0.151***

(0.019) (0.018) (0.036)
Network -0.158*** -0.077** -0.079*** -0.250*** -0.702***

(0.020) (0.038) (0.024) (0.038) (0.041)
County -0.009 -0.036 -0.021 -0.043 -1.377***

(0.036) (0.039) (0.039) (0.036) (0.030)
County FE Yes Yes Yes Yes Yes Yes
Time FE Yes Yes Yes Yes Yes Yes
County-Time FE No No No No No Yes
Observations 1,883,123 1,899,700 1,896,092 1,910,679 1,850,340 1,848,409
R-squared 0.031 0.025 0.023 0.027 0.050 0.045

Note: The table shows the results of regression (15), where the dependent variable πe
i,d,c,t denotes the inflation expectations of

individual i of gender d in county c at time t. Network is defined as the average of inflation expectations of individuals from the

same demographic group in other counties. County denotes the average in the own county. Network and county combinations

of demographic categories denote the averages conditional on other individuals belonging to the same demographic categories.

Observations are weighted by the number of responses in a county in each period. Standard errors are clustered at the county level.
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Table 13: Similarity and Dissimilarity Effect by Gender

(1) (2) (3) (4) (5) (6)
Similarity-Network 0.303*** 0.285*** 0.325*** 0.211*** 0.512*** 0.460***

(0.036) (0.021) (0.054) (0.022) (0.108) (0.088)
Dissimilarity-Network -0.086*** -0.106** -0.004 -0.153*** 0.052 -0.002

(0.026) (0.040) (0.031) (0.031) (0.154) (0.136)
Similarity-County 0.675*** 0.662*** 0.602*** 0.578*** 0.558*** 0.560***

(0.035) (0.030) (0.040) (0.033) (0.033) (0.035)
Dissimilarity-County 0.037*** 0.029** -0.032*** -0.051*** -0.038*** -0.036***

(0.012) (0.013) (0.011) (0.008) (0.006) (0.006)
County FE No No Yes Yes Yes Yes
Time FE No Yes No Yes Yes Yes
Counties All All All All >200m >250m
Observations 1,858,010 1,858,010 1,858,010 1,858,010 1,858,010 1,858,010
R-squared 0.026 0.026 0.026 0.026 0.027 0.027

Note: The table shows the results of regression (15), where the dependent variable πe
i,d,c,t denotes the inflation expectations of individual

i of gender d in county c at time t. Similarity − Network denotes the average of inflation expectations of individuals of the same gender

in other counties. Dissimilarity − Network denotes the average of inflation expectations of individuals of the opposite gender in other

counties. Similarity − County denotes the average of inflation expectations of respondents of the same gender within her/his own county.

Dissimilarity − County denotes the average of inflation expectations of respondents of the opposite gender within her/his own county.

Column (5) shows regression where the network is built removing counties that are closer than 200 miles and Column (6) removing counties

closer than 250 miles. Observations are weighted by the number of responses in a county in each period. Standard errors are clustered at the

county level.
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Table 14: Similarity Effects by Other Demographic Characteristics

Age Income Politics Gender
(1) (2) (3) (4)

Network-Dem 0.006 0.025** 0.031* 0.030**
(0.011) (0.013) (0.017) (0.014)

Own County Dem 0.574*** 0.559*** 0.566*** 0.549***
(0.018) (0.021) (0.025) (0.025)

County FE Yes Yes Yes Yes
Time FE Yes Yes Yes Yes
Dem-Time FE Yes Yes Yes Yes
Observations 1,883,123 1,899,700 1,330,360 1,910,679
R-squared 0.039 0.027 0.024 0.029

Note: The table shows the results of regression (15), where the dependent variable πe
i,d,c,t denotes

the inflation expectations of individual i of gender d in county c at time t. Network is defined as the

average of inflation expectations of individuals from the same demographic group in other counties.

County denotes the average in the own county. Network and county combinations of demographic

categories denote the averages conditional on other individuals belonging to the same demographic

categories. Observations are weighted by the minimum number of responses by gender in a county

in each period. Standard errors are clustered at the county level.

65



Table 15: Exogenous Variation and Network Effect

(1) (2) (3) (4) (5)
∑k ̸=c ωc,kGas_e f f ectc,t 1.771***

(1.248)
∑k ̸=c ωc,kGas_e f f ectc,d,t 2.196* 0.727

(1.126) (0.948)
∑k ̸=c ωc,kπe

d,k,t 0.972*** 1.173***
(0.126) (0.122)

Gas_e f f ectc,t 2.091* 2.107* 0.220 3.192*** 3.145***
(1.187) (1.203) (1.106) (0.396) (0.387)

Sample All Men Female All All
Time FE No Yes Yes Yes Yes
County FE Yes No Yes Yes Yes
Regression OLS OLS OLS OLS IV
F-Test - - - - 179.8
Observations 1,239,680 606,305 632,750 1,239,055 1,239,055
R-squared 0.014 0.014 0.014 0.020 0.006

Note: This table shows results from estimating two specifications. First, πe
i,c,t = αc + θt + αsGas_e f f ectc,t +

βs ∑k ̸=c ωc,kGas_e f f ectd,k,t + εi,d,c,t, and second, πe
i,d,c,t = αc + θt + αsGas_e f f ectc,t + βs ∑k ̸=c ωc,kπe

d,k,t + εi,t, where πe
i,d,c,t

denotes the inflation expectations of individual i, of gender d, in county c, at time t; Gas_e f f ectc,t denotes the gas effect

variable constructed as described in the text of county c at time t; πe
d,k,t gender d inflation expectations in county k at

time t; Gas_e f f ectd,k,t denotes the gas effect variable constructed as described in the text; and αc and γt are county and

time fixed effects. Column (6) use as instrument ∑k ̸=c ωc,kGas_e f f ectd,k,t for ∑k ̸=c ωc,kπe
d,k,t Observations are weighted

by the number of responses in a county in each period. Standard errors are clustered at the county level
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Table 16: Demographic Differences

(1) (2)
Pgas,t × Commc(i) 3.958***

(0.475)
Pgas,t × Commc(i) × I(Fem = 1) -3.124***

(0.572)
∑k ̸=c ωc,kGas_e f f ectc,d,t 0.532***

(0.023)(
∑k ̸=c ωc,kGas_e f f ectc,d,t

)
× I(Fem = 1) -0.167***

(0.023)
πe
−i,d,c,t 1.980***

(0.200)
πe
−i,d,c,t × I(Fem = 1) -1.398***

(0.319)
Observations 1,239,055 1,910,679
R-squared 0.024 0.028

Note: This table replicates results of Tables 3 and Table 4, but including interactions between

gender to test the different between the coefficient found. Column (1) shows results for the re-

gressions of Columns (5) and (6) of Table 3, but in a single regression, where we interact the

coefficients with a indicator variable I(Fem = 1) that takes a value of 1 if the respondent’s gender

is female and zero otherwise. Column (2) shows results for the regressions of Columns (4) and (5)

of Table 4, but in a single regression, with the main coefficient interacted by the gender indicator

variable. Both regression include time fixed effects, county fixed effects and the interaction of

both with the gender indicator variable. We use weights by the number of respondents in a given

county and standard errors are clustered at the county level.

67


	Introduction
	Theoretical Framework
	Baseline: No Social Interaction
	Social Interaction
	Implications for Stability
	Testable Implications for Inflation Expectations

	Data
	Empirical Analysis
	Empirical Challenges and Identification Strategy
	Individual Inflation Expectations and the Inflation Expectations of Others
	Individual Inflation Expectations and the Inflation Expectations of Similar Others
	Transmission of Exogenous Shocks through the Network

	Conclusion
	Proofs
	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Proposition 3
	Proof of Proposition 4
	Proof of Corollary 2

	ONLINE APPENDIX: The Reflection Problem
	Baseline
	Time Fixed Effects
	Time Fixed Effect with Constant Weights and Bias
	No Time Fixed Effect
	With Time Fixed Effect


	Additional Figures
	Social Connectedness Weights: Examples
	Other Additional Figures

	Additional Evidence: County-Level Evidence
	Other Additional Tables

